Solve Simaltoinecusly \( 3 x-4 y=5 \) and \( 2 x^{2}-5 x y+3 y^{2}=4 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the equations simultaneously, we start with the linear equation \(3x - 4y = 5\). We can express \(y\) in terms of \(x\): \[ 4y = 3x - 5 \implies y = \frac{3x - 5}{4} \] Now we substitute \(y\) into the quadratic equation \(2x^2 - 5xy + 3y^2 = 4\): \[ 2x^2 - 5x\left(\frac{3x - 5}{4}\right) + 3\left(\frac{3x - 5}{4}\right)^2 = 4 \] Multiplying through by 4 to eliminate the fraction gives: \[ 8x^2 - 5x(3x - 5) + 3(3x - 5)^2 = 16 \] Expanding the terms: \[ 8x^2 - 15x^2 + 25x + 3(9x^2 - 30x + 25) = 16 \] This simplifies to: \[ 8x^2 - 15x^2 + 25x + 27x^2 - 90x + 75 = 16 \] Combining like terms results in: \[ (8 - 15 + 27)x^2 + (25 - 90)x + 75 - 16 = 0 \] \[ 20x^2 - 65x + 59 = 0 \] Now we can use the quadratic formula to find \(x\): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{65 \pm \sqrt{(-65)^2 - 4 \cdot 20 \cdot 59}}{2 \cdot 20} \] Calculating the discriminant: \[ 65^2 - 4 \cdot 20 \cdot 59 = 4225 - 4720 = -495 \] Since the discriminant is negative, there are no real solutions for \(x\). This implies that the system of equations does not have any points of intersection in the real number plane, meaning the lines described by the equations do not meet.
