Pregunta
upstudy study bank question image url

Solve Simaltoinecusly \( 3 x-4 y=5 \) and \( 2 x^{2}-5 x y+3 y^{2}=4 \)

Ask by Washington Stanley. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( (x, y) = (-1, -2) \) and \( (x, y) = (11, 7) \).

Solución

Solve the system of equations \( 3x-4y=5;2x^{2}-5xy+3y^{2}=4 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}3x-4y=5\\2x^{2}-5xy+3y^{2}=4\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{5+4y}{3}\\2x^{2}-5xy+3y^{2}=4\end{array}\right.\) - step2: Substitute the value of \(x:\) \(2\left(\frac{5+4y}{3}\right)^{2}-5\times \frac{5+4y}{3}\times y+3y^{2}=4\) - step3: Simplify: \(\frac{50}{9}+\frac{80}{9}y+\frac{59}{9}y^{2}-\frac{5\left(5+4y\right)y}{3}=4\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{50}{9}+\frac{80}{9}y+\frac{59}{9}y^{2}-\frac{5\left(5+4y\right)y}{3}\right)\times 9=4\times 9\) - step5: Simplify the equation: \(50+5y-y^{2}=36\) - step6: Move the expression to the left side: \(50+5y-y^{2}-36=0\) - step7: Subtract the numbers: \(14+5y-y^{2}=0\) - step8: Factor the expression: \(\left(7-y\right)\left(2+y\right)=0\) - step9: Separate into possible cases: \(\begin{align}&7-y=0\\&2+y=0\end{align}\) - step10: Solve the equation: \(\begin{align}&y=7\\&y=-2\end{align}\) - step11: Calculate: \(y=7\cup y=-2\) - step12: Rearrange the terms: \(\left\{ \begin{array}{l}x=\frac{5+4y}{3}\\y=7\end{array}\right.\cup \left\{ \begin{array}{l}x=\frac{5+4y}{3}\\y=-2\end{array}\right.\) - step13: Calculate: \(\left\{ \begin{array}{l}x=11\\y=7\end{array}\right.\cup \left\{ \begin{array}{l}x=-1\\y=-2\end{array}\right.\) - step14: Calculate: \(\left\{ \begin{array}{l}x=-1\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=11\\y=7\end{array}\right.\) - step15: Check the solution: \(\left\{ \begin{array}{l}x=-1\\y=-2\end{array}\right.\cup \left\{ \begin{array}{l}x=11\\y=7\end{array}\right.\) - step16: Rewrite: \(\left(x,y\right) = \left(-1,-2\right)\cup \left(x,y\right) = \left(11,7\right)\) The solutions to the system of equations \(3x-4y=5\) and \(2x^{2}-5xy+3y^{2}=4\) are \((x,y) = (-1,-2)\) and \((x,y) = (11,7)\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equations simultaneously, we start with the linear equation \(3x - 4y = 5\). We can express \(y\) in terms of \(x\): \[ 4y = 3x - 5 \implies y = \frac{3x - 5}{4} \] Now we substitute \(y\) into the quadratic equation \(2x^2 - 5xy + 3y^2 = 4\): \[ 2x^2 - 5x\left(\frac{3x - 5}{4}\right) + 3\left(\frac{3x - 5}{4}\right)^2 = 4 \] Multiplying through by 4 to eliminate the fraction gives: \[ 8x^2 - 5x(3x - 5) + 3(3x - 5)^2 = 16 \] Expanding the terms: \[ 8x^2 - 15x^2 + 25x + 3(9x^2 - 30x + 25) = 16 \] This simplifies to: \[ 8x^2 - 15x^2 + 25x + 27x^2 - 90x + 75 = 16 \] Combining like terms results in: \[ (8 - 15 + 27)x^2 + (25 - 90)x + 75 - 16 = 0 \] \[ 20x^2 - 65x + 59 = 0 \] Now we can use the quadratic formula to find \(x\): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{65 \pm \sqrt{(-65)^2 - 4 \cdot 20 \cdot 59}}{2 \cdot 20} \] Calculating the discriminant: \[ 65^2 - 4 \cdot 20 \cdot 59 = 4225 - 4720 = -495 \] Since the discriminant is negative, there are no real solutions for \(x\). This implies that the system of equations does not have any points of intersection in the real number plane, meaning the lines described by the equations do not meet.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad