The graph of \( g(x)=a\left(\frac{1}{5}\right)^{x}-5 \) passes throunti \( (-2 ;-4) \). 7.1 Show that \( \alpha=\frac{1}{25} \) 7.2 Determine the coordinates of the \( x \) intericentof 7.3 Given: \( h(x)=\left(\frac{1}{5}\right)^{x} \) 7.3.1 Determine the equation of \( x^{-1}(x) \), the inverse of \( h \), in the for \( y=\ldots \) 7.3.2 Describe the transformation from. g to h .
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find \( \alpha \), we can use the point \( (-2, -4) \). Plugging in these values into the equation \( g(x) = a\left(\frac{1}{5}\right)^{x}-5 \): \[ -4 = a\left(\frac{1}{5}\right)^{-2} - 5 \] Solving for \( a \): \[ -4 + 5 = a(25) \] \[ 1 = 25a \Rightarrow a = \frac{1}{25} \] Thus, \( \alpha = \frac{1}{25} \). For the \( x \)-intercept, set \( g(x) = 0 \): \[ 0 = a\left(\frac{1}{5}\right)^{x} - 5 \] Solving gives: \[ a\left(\frac{1}{5}\right)^{x} = 5 \Rightarrow \left(\frac{1}{5}\right)^{x} = 125 \Rightarrow \left(\frac{1}{5}\right)^{x} = \left(\frac{1}{5}\right)^{-3} \] Thus, \( x = -3 \). The coordinates are \( (-3, 0) \). To find the inverse \( h^{-1}(x) \): Let \( y = \left(\frac{1}{5}\right)^{x} \): \[ x = \left(\frac{1}{5}\right)^{y} \Rightarrow \log_{(1/5)}(x) = y \] In exponential form, it becomes \( y = -\log_{5}(x) \). For the transformation from \( g \) to \( h \): We can see that \( g(x) \) is a transformation of \( h(x) \) which includes vertical scaling by \( a \) (a factor of \( \frac{1}{25} \)), a horizontal translation (shifting left or right, defined by the \( x \)-intercept), and a vertical shift downward by 5. So, it’s like taking our \( h(x) \) and shrinking it while also shifting it down!
