Responder
The general solution is \( x = \frac{7\pi}{4} + 2k\pi \), where \( k \) is any integer.
Solución
Solve the equation \( \cos(x)-\sin(x)=\sqrt{2} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\cos\left(x\right)-\sin\left(x\right)=\sqrt{2}\)
- step1: Move the expression to the right side:
\(-\sin\left(x\right)=\sqrt{2}-\cos\left(x\right)\)
- step2: Move the expression to the left side:
\(-\sin\left(x\right)-\sqrt{2}=-\cos\left(x\right)\)
- step3: Raise both sides to the \(2\)-th power\(:\)
\(\left(-\sin\left(x\right)-\sqrt{2}\right)^{2}=\left(-\cos\left(x\right)\right)^{2}\)
- step4: Calculate:
\(\sin^{2}\left(x\right)+2\sqrt{2}\times \sin\left(x\right)+2=\cos^{2}\left(x\right)\)
- step5: Rewrite the expression:
\(\sin^{2}\left(x\right)+2\sqrt{2}\times \sin\left(x\right)+2=1-\sin^{2}\left(x\right)\)
- step6: Move the expression to the left side:
\(\sin^{2}\left(x\right)+2\sqrt{2}\times \sin\left(x\right)+2-\left(1-\sin^{2}\left(x\right)\right)=0\)
- step7: Calculate:
\(2\sin^{2}\left(x\right)+2\sqrt{2}\times \sin\left(x\right)+1=0\)
- step8: Solve using the quadratic formula:
\(\sin\left(x\right)=\frac{-2\sqrt{2}\pm \sqrt{\left(2\sqrt{2}\right)^{2}-4\times 2}}{2\times 2}\)
- step9: Simplify the expression:
\(\sin\left(x\right)=\frac{-2\sqrt{2}\pm \sqrt{\left(2\sqrt{2}\right)^{2}-4\times 2}}{4}\)
- step10: Simplify the expression:
\(\sin\left(x\right)=\frac{-2\sqrt{2}\pm \sqrt{0}}{4}\)
- step11: Simplify the expression:
\(\sin\left(x\right)=\frac{-2\sqrt{2}\pm 0}{4}\)
- step12: Separate into possible cases:
\(\begin{align}&\sin\left(x\right)=\frac{-2\sqrt{2}+0}{4}\\&\sin\left(x\right)=\frac{-2\sqrt{2}-0}{4}\end{align}\)
- step13: Simplify the expression:
\(\begin{align}&\sin\left(x\right)=-\frac{\sqrt{2}}{2}\\&\sin\left(x\right)=\frac{-2\sqrt{2}-0}{4}\end{align}\)
- step14: Simplify the expression:
\(\begin{align}&\sin\left(x\right)=-\frac{\sqrt{2}}{2}\\&\sin\left(x\right)=-\frac{\sqrt{2}}{2}\end{align}\)
- step15: Evaluate the logic:
\(\sin\left(x\right)=-\frac{\sqrt{2}}{2}\)
- step16: Use the inverse trigonometric function:
\(x=\arcsin\left(-\frac{\sqrt{2}}{2}\right)\)
- step17: Calculate:
\(\begin{align}&x=\frac{7\pi }{4}\\&x=\frac{5\pi }{4}\end{align}\)
- step18: Add the period:
\(\begin{align}&x=\frac{7\pi }{4}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{5\pi }{4}+2k\pi ,k \in \mathbb{Z}\end{align}\)
- step19: Rewrite the expression:
\(x=\left\{ \begin{array}{l}\frac{5\pi }{4}+2k\pi \\\frac{7\pi }{4}+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
- step20: Check the solution:
\(x=\frac{7\pi }{4}+2k\pi ,k \in \mathbb{Z}\)
The general solution of the equation \( \cos x - \sin x = \sqrt{2} \) is \( x = \frac{7\pi}{4} + 2k\pi \), where \( k \) is an integer.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución