Pregunta
upstudy study bank question image url

CISE 9 Discuss the nature of the roots of the following quadratic equations, without solving the equations: \( \begin{array}{lll}\text { (1) } x^{2}-3 x-10=0 & \text { (2) } x^{2}-2 x+1=0 \\ \text { (4) } x^{2}-x+3=0 & \text { (5) } 2 x^{2}+6=-7 x \\ \text { (7) }(x+2)(x-1)=4 x & \text { (8) } x^{2}+p^{2}=2 p x & \text { (6) } x^{2}-5 x-7=0 \\ \text { (9) } k x^{2}+(4 k-1) x=2-4 k\end{array} \)

Ask by Riley Fernandez. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- Equation (1): Two distinct real roots. - Equation (2): One real root. - Equation (3): Two complex roots. - Equation (4): Two distinct real roots. - Equation (5): Two distinct real roots. - Equation (6): Two distinct real roots. - Equation (7): Two distinct real roots. - Equation (8): One real root. - Equation (9): Two distinct real roots.

Solución

To discuss the nature of the roots of the given quadratic equations, we will use the discriminant \( D \) of a quadratic equation in the standard form \( ax^2 + bx + c = 0 \). The discriminant is calculated as: \[ D = b^2 - 4ac \] The nature of the roots can be determined as follows: - If \( D > 0 \): The equation has two distinct real roots. - If \( D = 0 \): The equation has exactly one real root (a repeated root). - If \( D < 0 \): The equation has two complex (non-real) roots. Now, let's analyze each equation step by step. 1. **Equation (1):** \( x^2 - 3x - 10 = 0 \) - Here, \( a = 1 \), \( b = -3 \), \( c = -10 \). - Calculate \( D = (-3)^2 - 4(1)(-10) = 9 + 40 = 49 \). - Since \( D > 0 \), there are two distinct real roots. 2. **Equation (2):** \( x^2 - 2x + 1 = 0 \) - Here, \( a = 1 \), \( b = -2 \), \( c = 1 \). - Calculate \( D = (-2)^2 - 4(1)(1) = 4 - 4 = 0 \). - Since \( D = 0 \), there is exactly one real root. 3. **Equation (3):** \( x^2 - x + 3 = 0 \) - Here, \( a = 1 \), \( b = -1 \), \( c = 3 \). - Calculate \( D = (-1)^2 - 4(1)(3) = 1 - 12 = -11 \). - Since \( D < 0 \), there are two complex roots. 4. **Equation (4):** \( 2x^2 + 6 = -7x \) (Rearranging gives \( 2x^2 + 7x + 6 = 0 \)) - Here, \( a = 2 \), \( b = 7 \), \( c = 6 \). - Calculate \( D = (7)^2 - 4(2)(6) = 49 - 48 = 1 \). - Since \( D > 0 \), there are two distinct real roots. 5. **Equation (5):** \( (x+2)(x-1) = 4x \) (Rearranging gives \( x^2 - 5x + 2 = 0 \)) - Here, \( a = 1 \), \( b = -5 \), \( c = 2 \). - Calculate \( D = (-5)^2 - 4(1)(2) = 25 - 8 = 17 \). - Since \( D > 0 \), there are two distinct real roots. 6. **Equation (6):** \( x^2 - 5x - 7 = 0 \) - Here, \( a = 1 \), \( b = -5 \), \( c = -7 \). - Calculate \( D = (-5)^2 - 4(1)(-7) = 25 + 28 = 53 \). - Since \( D > 0 \), there are two distinct real roots. 7. **Equation (7):** \( (x+2)(x-1) = 4x \) (Rearranging gives \( x^2 - 5x + 2 = 0 \)) - This is the same as Equation (5), so the nature of the roots is the same: two distinct real roots. 8. **Equation (8):** \( x^2 + p^2 = 2px \) (Rearranging gives \( x^2 - 2px + p^2 = 0 \)) - Here, \( a = 1 \), \( b = -2p \), \( c = p^2 \). - Calculate \( D = (-2p)^2 - 4(1)(p^2) = 4p^2 - 4p^2 = 0 \). - Since \( D = 0 \), there is exactly one real root. 9. **Equation (9):** \( kx^2 + (4k-1)x = 2 - 4k \) (Rearranging gives \( kx^2 + (4k-1)x + (4k-2) = 0 \)) - Here, \( a = k \), \( b = 4k - 1 \), \( c = 4k - 2 \). - Calculate \( D = (4k - 1)^2 - 4k(4k - 2) = (16k^2 - 8k + 1) - (16k^2 - 8k) = 1 \). - Since \( D > 0 \), there are two distinct real roots. ### Summary of the Nature of Roots: 1. Two distinct real roots. 2. One real root (repeated). 3. Two complex roots. 4. Two distinct real roots. 5. Two distinct real roots. 6. Two distinct real roots. 7. Two distinct real roots. 8. One real root (repeated). 9. Two distinct real roots.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the nature of the roots of the given quadratic equations, we can use the discriminant \(D = b^2 - 4ac\). If \(D > 0\), the equation has two distinct real roots; if \(D = 0\), it has exactly one real root (or a repeated root); and if \(D < 0\), the roots are complex (not real). 1. For \(x^{2}-3x-10=0\): \(D = (-3)^2 - 4(1)(-10) = 9 + 40 = 49\) (two distinct real roots). 2. For \(x^{2}-2x+1=0\): \(D = (-2)^2 - 4(1)(1) = 4 - 4 = 0\) (one real root). 3. For \(x^{2}-x+3=0\): \(D = (-1)^2 - 4(1)(3) = 1 - 12 = -11\) (two complex roots). 4. For \(2x^{2}+6=-7x\): rewrite as \(2x^{2} + 7x + 6 = 0\), then \(D = 7^2 - 4(2)(6) = 49 - 48 = 1\) (two distinct real roots). 5. For \((x+2)(x-1)=4x\): Simplifying gives \(x^2 + x - 2 = 0\) with \(D = 1^2 - 4(1)(-2) = 1 + 8 = 9\) (two distinct real roots). 6. For \(x^{2}-5x-7=0\): \(D = (-5)^2 - 4(1)(-7) = 25 + 28 = 53\) (two distinct real roots). 7. For \(kx^{2}+(4k-1)x=2-4k\): Rearranging leads to \(kx^2 + (4k-1)x + 4k - 2 = 0\) with \(D = (4k-1)^2 - 4k(4k - 2)\). The specific nature depends on the value of \(k\), and more analysis is needed. 8. For \(x^{2}+p^{2}=2px\): Rearranging gives \(x^{2}-2px+p^{2}=0\) which has \(D = (2p)^2 - 4(1)(p^2) = 4p^2 - 4p^2 = 0\) (one real root).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad