CISE 9 Discuss the nature of the roots of the following quadratic equations, without solving the equations: \( \begin{array}{lll}\text { (1) } x^{2}-3 x-10=0 & \text { (2) } x^{2}-2 x+1=0 \\ \text { (4) } x^{2}-x+3=0 & \text { (5) } 2 x^{2}+6=-7 x \\ \text { (7) }(x+2)(x-1)=4 x & \text { (8) } x^{2}+p^{2}=2 p x & \text { (6) } x^{2}-5 x-7=0 \\ \text { (9) } k x^{2}+(4 k-1) x=2-4 k\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To determine the nature of the roots of the given quadratic equations, we can use the discriminant \(D = b^2 - 4ac\). If \(D > 0\), the equation has two distinct real roots; if \(D = 0\), it has exactly one real root (or a repeated root); and if \(D < 0\), the roots are complex (not real). 1. For \(x^{2}-3x-10=0\): \(D = (-3)^2 - 4(1)(-10) = 9 + 40 = 49\) (two distinct real roots). 2. For \(x^{2}-2x+1=0\): \(D = (-2)^2 - 4(1)(1) = 4 - 4 = 0\) (one real root). 3. For \(x^{2}-x+3=0\): \(D = (-1)^2 - 4(1)(3) = 1 - 12 = -11\) (two complex roots). 4. For \(2x^{2}+6=-7x\): rewrite as \(2x^{2} + 7x + 6 = 0\), then \(D = 7^2 - 4(2)(6) = 49 - 48 = 1\) (two distinct real roots). 5. For \((x+2)(x-1)=4x\): Simplifying gives \(x^2 + x - 2 = 0\) with \(D = 1^2 - 4(1)(-2) = 1 + 8 = 9\) (two distinct real roots). 6. For \(x^{2}-5x-7=0\): \(D = (-5)^2 - 4(1)(-7) = 25 + 28 = 53\) (two distinct real roots). 7. For \(kx^{2}+(4k-1)x=2-4k\): Rearranging leads to \(kx^2 + (4k-1)x + 4k - 2 = 0\) with \(D = (4k-1)^2 - 4k(4k - 2)\). The specific nature depends on the value of \(k\), and more analysis is needed. 8. For \(x^{2}+p^{2}=2px\): Rearranging gives \(x^{2}-2px+p^{2}=0\) which has \(D = (2p)^2 - 4(1)(p^2) = 4p^2 - 4p^2 = 0\) (one real root).
