Pregunta

A square prism measuring 2 m by 2 m in base length and 5 m in height has a half-sphere attached to the top. What is the total surface area of this composite solid?

Ask by Newton Franklin. in the United States
Jan 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total surface area of the composite solid is \(44 + 2\pi\) square meters.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To find the total surface area of the composite solid, we need to calculate the surface areas of the square prism and the half-sphere separately, then combine them. 1. **Surface Area of the Square Prism:** The square prism has a base that is a square with side length \( 2 \, \text{m} \) and a height of \( 5 \, \text{m} \). - Area of the base (bottom): \[ \text{Base Area} = 2 \times 2 = 4 \, \text{m}^2 \] - Area of the sides (4 rectangles): \[ \text{Lateral Area} = 4 \times (\text{base length} \times \text{height}) = 4 \times (2 \times 5) = 40 \, \text{m}^2 \] - Total surface area of the prism (excluding the top base): \[ \text{Total Prism Area} = \text{Base Area} + \text{Lateral Area} = 4 + 40 = 44 \, \text{m}^2 \] 2. **Surface Area of the Half-Sphere:** The radius of the half-sphere is half of the base length of the prism: \[ r = \frac{2}{2} = 1 \, \text{m} \] - Surface area of a full sphere: \[ \text{Sphere Area} = 4\pi r^2 = 4\pi (1)^2 = 4\pi \, \text{m}^2 \] - Since we only have a half-sphere: \[ \text{Half-Sphere Area} = 2\pi r^2 = 2\pi (1)^2 = 2\pi \, \text{m}^2 \] 3. **Total Surface Area of the Composite Solid:** Since the top base of the prism is covered by the half-sphere, we do not include it in the calculations for the total surface area: \[ \text{Total Surface Area} = \text{Total Prism Area} + \text{Half-Sphere Area} = 44 + 2\pi \] Calculating \(2\pi\) (approximately \(6.28\)): \[ \text{Total Surface Area} \approx 44 + 6.28 \approx 50.28 \, \text{m}^2 \] Thus, the total surface area of the composite solid is approximately: \[ \text{Total Surface Area} \approx 50.28 \, \text{m}^2 \]

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad