Pregunta
upstudy study bank question image url

Given the set of points as vertices of quadrilateral QRST, determine whether it is a rhombus, a rectangle, or a square. Choose all that apply. Q(1, 2), R(-2, -1\( ), S(1,-4), T(4,-1) \) Select one or more: a. Kite b. square c. rhombus d. None of these e. Rectangle

Ask by Hilton Watkins. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The quadrilateral QRST is both a square and a rhombus.

Solución

To determine the type of quadrilateral QRST formed by the points \( Q(1, 2) \), \( R(-2, -1) \), \( S(1, -4) \), and \( T(4, -1) \), we will follow these steps: 1. **Calculate the lengths of the sides** to check if it is a rhombus or a square. 2. **Calculate the lengths of the diagonals** to check if it is a rectangle or a square. 3. **Check the properties of the angles** to confirm the type of quadrilateral. ### Step 1: Calculate the lengths of the sides The distance between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by the formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Let's calculate the lengths of the sides \( QR \), \( RS \), \( ST \), and \( TQ \). - **Length of \( QR \)**: \[ d_{QR} = \sqrt{((-2) - 1)^2 + ((-1) - 2)^2} = \sqrt{(-3)^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] - **Length of \( RS \)**: \[ d_{RS} = \sqrt{(1 - (-2))^2 + ((-4) - (-1))^2} = \sqrt{(3)^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] - **Length of \( ST \)**: \[ d_{ST} = \sqrt{(4 - 1)^2 + ((-1) - (-4))^2} = \sqrt{(3)^2 + (3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] - **Length of \( TQ \)**: \[ d_{TQ} = \sqrt{(1 - 4)^2 + (2 - (-1))^2} = \sqrt{(-3)^2 + (3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Step 2: Calculate the lengths of the diagonals Now, let's calculate the lengths of the diagonals \( QS \) and \( RT \). - **Length of \( QS \)**: \[ d_{QS} = \sqrt{(1 - 1)^2 + (2 - (-4))^2} = \sqrt{(0)^2 + (6)^2} = \sqrt{36} = 6 \] - **Length of \( RT \)**: \[ d_{RT} = \sqrt{(4 - (-2))^2 + ((-1) - (-1))^2} = \sqrt{(6)^2 + (0)^2} = \sqrt{36} = 6 \] ### Step 3: Analyze the properties - All sides are equal: \( QR = RS = ST = TQ = 3\sqrt{2} \) (indicating it could be a rhombus or square). - The diagonals are equal: \( QS = RT = 6 \) (indicating it could be a rectangle or square). ### Conclusion Since all sides are equal and the diagonals are equal, the quadrilateral QRST is a **square**. It is also a **rhombus** because all sides are equal. Thus, the correct options are: - b. square - c. rhombus The final answer is: - **b. square** - **c. rhombus**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the properties of quadrilateral QRST, we first need to check the lengths of its sides and observe the angles. A rhombus has all sides equal, while a rectangle has four right angles. A square possesses all the characteristics of both. To perform this check efficiently, calculate the lengths of each side using the distance formula, and verify the slopes to check for perpendicularity, which indicates right angles. Analyzing the properties of the quadrilateral will help distinguish which options apply. Alternatively, one could use the coordinates in a graph to visualize the quadrilateral and intuitively identify its shape based on the angles and side lengths evident from the plotted points. Enjoy exploring the geometry of QRST!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad