\( p ^ { i l - ( k - 1 ) } \cdot ( \frac { - 3 } { p } ) ^ { k - 1 } = p ^ { 5 } \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Let's simplify the left-hand side of the equation step by step. First, we can rewrite the left side: \[ p^{i \cdot l - (k - 1)} \cdot \left( -\frac{3}{p} \right)^{k - 1} \] This can be split into two parts: 1. The first part is \( p^{i \cdot l - (k - 1)} \). 2. The second part can be rewritten as: \[ (-3)^{k-1} \cdot p^{-(k-1)} \] Now combining these two parts gives us: \[ p^{i \cdot l - (k - 1)} \cdot (-3)^{k-1} \cdot p^{-(k-1)} = (-3)^{k-1} \cdot p^{i \cdot l - (k - 1) - (k - 1)} \] This simplifies to: \[ (-3)^{k-1} \cdot p^{i \cdot l - 2(k - 1)} \] Setting this whole expression equal to the right-hand side \(p^{5}\): \[ (-3)^{k-1} \cdot p^{i \cdot l - 2(k - 1)} = p^{5} \] From here, we can equate the exponents of \(p\) and the constants: 1. From the exponents: \[ i \cdot l - 2(k - 1) = 5 \] 2. From the constant \( (-3)^{k-1} = 1 \): This implies that \( k-1 = 0 \) or \( k-1 \) must be even, e.g., \( k - 1 = 2n \) where \( n \) is an integer. In the case of \( k - 1 = 0 \), we have: - \( k = 1 \) Then you can substitute \( k \) back into the equation to find corresponding values of \( i \) and \( l \). Finalizing, the equation gives relations to solve for \(i\), \(l\), and \(k\). You can now rearrange these equations based on \( k \) values to find specific integer solutions!
