Pregunta
upstudy study bank question image url

\( p ^ { i l - ( k - 1 ) } \cdot ( \frac { - 3 } { p } ) ^ { k - 1 } = p ^ { 5 } \)

Ask by Huang Tyler. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To solve the equation \( p^{il - (k - 1)} \cdot \left( \frac{-3}{p} \right)^{k - 1} = p^{5} \), follow these steps: 1. **Simplify the equation**: \[ p^{il - (k - 1)} \cdot (-3)^{k - 1} \cdot p^{-(k - 1)} = p^{5} \] Combine the powers of \( p \): \[ p^{il - 2(k - 1)} \cdot (-3)^{k - 1} = p^{5} \] 2. **Equate the exponents**: Since the bases are the same, set the exponents equal: \[ il - 2(k - 1) = 5 \] Simplify: \[ il - 2k + 2 = 5 \implies il - 2k = 3 \] 3. **Determine the condition for \((-3)^{k - 1}\)**: For the equation to hold, \((-3)^{k - 1}\) must equal 1, which requires \(k - 1\) to be even. Therefore, \(k\) must be an odd number. **Summary**: - The relationship between \(i\), \(l\), and \(k\) is \(il - 2k = 3\). - \(k\) must be an odd integer for the equation to be valid. If specific values for \(i\) and \(l\) are provided, you can solve for \(k\) and subsequently for \(p\).

Solución

To solve the equation \[ p^{il - (k - 1)} \cdot \left( \frac{-3}{p} \right)^{k - 1} = p^{5}, \] let's break it down step by step. 1. **Rewrite the left side**: The term \(\left( \frac{-3}{p} \right)^{k - 1}\) can be rewritten as \((-3)^{k - 1} \cdot p^{-(k - 1)}\). Therefore, the equation becomes: \[ p^{il - (k - 1)} \cdot (-3)^{k - 1} \cdot p^{-(k - 1)} = p^{5}. \] 2. **Combine the powers of \(p\)**: The left side can be simplified by combining the powers of \(p\): \[ p^{il - (k - 1) - (k - 1)} \cdot (-3)^{k - 1} = p^{5}. \] This simplifies to: \[ p^{il - 2(k - 1)} \cdot (-3)^{k - 1} = p^{5}. \] 3. **Equate the powers of \(p\)**: Since the bases are the same, we can equate the exponents: \[ il - 2(k - 1) = 5. \] 4. **Solve for \(p\)**: The equation now involves \(il\) and \(k\). We can express \(p\) in terms of \(k\) and \(il\): \[ il - 2k + 2 = 5 \implies il - 2k = 3. \] This gives us a relationship between \(il\) and \(k\). 5. **Consider the term \((-3)^{k - 1}\)**: Since the left side must equal \(p^5\), we also need to consider the term \((-3)^{k - 1}\). For the equation to hold, \((-3)^{k - 1}\) must equal 1, which occurs when \(k - 1\) is even. Thus, \(k\) must be odd. In summary, we have: - The relationship \(il - 2k = 3\). - \(k\) must be odd for the equation to hold. If you have specific values for \(i\) and \(l\), we can further solve for \(k\) and \(p\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's simplify the left-hand side of the equation step by step. First, we can rewrite the left side: \[ p^{i \cdot l - (k - 1)} \cdot \left( -\frac{3}{p} \right)^{k - 1} \] This can be split into two parts: 1. The first part is \( p^{i \cdot l - (k - 1)} \). 2. The second part can be rewritten as: \[ (-3)^{k-1} \cdot p^{-(k-1)} \] Now combining these two parts gives us: \[ p^{i \cdot l - (k - 1)} \cdot (-3)^{k-1} \cdot p^{-(k-1)} = (-3)^{k-1} \cdot p^{i \cdot l - (k - 1) - (k - 1)} \] This simplifies to: \[ (-3)^{k-1} \cdot p^{i \cdot l - 2(k - 1)} \] Setting this whole expression equal to the right-hand side \(p^{5}\): \[ (-3)^{k-1} \cdot p^{i \cdot l - 2(k - 1)} = p^{5} \] From here, we can equate the exponents of \(p\) and the constants: 1. From the exponents: \[ i \cdot l - 2(k - 1) = 5 \] 2. From the constant \( (-3)^{k-1} = 1 \): This implies that \( k-1 = 0 \) or \( k-1 \) must be even, e.g., \( k - 1 = 2n \) where \( n \) is an integer. In the case of \( k - 1 = 0 \), we have: - \( k = 1 \) Then you can substitute \( k \) back into the equation to find corresponding values of \( i \) and \( l \). Finalizing, the equation gives relations to solve for \(i\), \(l\), and \(k\). You can now rearrange these equations based on \( k \) values to find specific integer solutions!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad