\( 5 . \quad \) Determine the sum of all the factors of 100
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
The sum of all the factors of 100 can be found by first determining its prime factorization, which is \(2^2 \times 5^2\). To find the sum of the factors, you can use the formula: \[ \sigma(n) = (1 + p_1 + p_1^2 + \ldots + p_1^{k_1})(1 + p_2 + p_2^2 + \ldots + p_2^{k_2}) \ldots \] For 100, this results in: \[ (1 + 2 + 4)(1 + 5 + 25) = 7 \times 31 = 217 \] So, the sum of all factors of 100 is \(217\). Factors of a number can be extremely useful! For example, when you’re simplifying fractions or looking to find greatest common divisors, knowing your factors can make calculations simpler and quicker. Additionally, factoring plays a vital role in real-world applications such as cryptography and computer algorithms, helping encode and decode information securely.
