Rectangle \( A B C D \) is graphed in the coordinate plane. The following are the vertices of the rectangle: \( A(3,-2), B(6,-2), C(6,5) \), and \( D(3,5) \). What is the area of rectangle \( A B C D \) ? square units
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the area of rectangle \( A B C D \), we need the lengths of two sides. The length of side \( AB \) can be calculated as follows: \[ AB = x_B - x_A = 6 - 3 = 3 \text{ units} \] The length of side \( AD \) can be calculated as: \[ AD = y_D - y_A = 5 - (-2) = 5 + 2 = 7 \text{ units} \] Now, we can find the area \( A \) of rectangle \( ABCD \) using the formula for the area of a rectangle: \[ \text{Area} = \text{length} \times \text{width} = AB \times AD = 3 \times 7 = 21 \text{ square units} \] Thus, the area of rectangle \( ABCD \) is \( 21 \) square units.
