Pregunta
upstudy study bank question image url

A new car is purchased for 23700 dollars. The value of the car depreciates at \( 13.5 \% \) per year. What will the value of the car be, to the nearest cent, after 10 years?

Ask by Delgado Brooks. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The car's value after 10 years is approximately $5,557.88.

Solución

To find the value of the car after 10 years, we can use the formula for depreciation: \[ V = P \times (1 - r)^n \] where: - \( V \) is the value of the car after \( n \) years, - \( P \) is the initial value of the car, - \( r \) is the annual depreciation rate, - \( n \) is the number of years. Given: - Initial value of the car, \( P = 23700 \) dollars, - Annual depreciation rate, \( r = 13.5\% = 0.135 \), - Number of years, \( n = 10 \). Substitute the values into the formula: \[ V = 23700 \times (1 - 0.135)^{10} \] Now, we can calculate the value of the car after 10 years. Calculate the value by following steps: - step0: Calculate: \(23700\left(1-0.135\right)^{10}\) - step1: Subtract the numbers: \(23700\times 0.865^{10}\) - step2: Convert the expressions: \(23700\left(\frac{173}{200}\right)^{10}\) - step3: Simplify: \(23700\times \frac{173^{10}}{200^{10}}\) - step4: Rewrite the expression: \(100\times 237\times \frac{173^{10}}{200^{10}}\) - step5: Rewrite the expression: \(100\times 237\times \frac{173^{10}}{100^{10}\times 2^{10}}\) - step6: Reduce the numbers: \(237\times \frac{173^{10}}{100^{9}\times 2^{10}}\) - step7: Multiply the fractions: \(\frac{237\times 173^{10}}{1024\times 100^{9}}\) The value of the car after 10 years will be approximately $5557.88 to the nearest cent.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the value of the car after 10 years, you can use the formula for depreciation: \[ V = P(1 - r)^t \] Where: - \( V \) is the future value of the car - \( P \) is the initial price ($23,700) - \( r \) is the depreciation rate (0.135) - \( t \) is the number of years (10) Plugging in the values: \[ V = 23700(1 - 0.135)^{10} \] Calculating it step by step: 1. Calculate \( 1 - 0.135 = 0.865 \) 2. Calculate \( 0.865^{10} \approx 0.2748 \) 3. Finally, \( V \approx 23700 \times 0.2748 \approx 6,499.74 \) Thus, the value of the car after 10 years will be approximately $6,499.74. And remember, it’s always better to maintain your car well; the gloom of depreciation can be softened by taking good care of your ride!

preguntas relacionadas

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad