Responder
a) \(2 \sin 2x - \sin x = 0\) solutions: \( x = -\arccos\left(\frac{1}{4}\right) + 2k\pi, k\pi, \arccos\left(\frac{1}{4}\right) + 2k\pi \)
b) \(\cos 2x + \sin^{2}x - 4\cos x + 3 = 0\) solution: \( x = 2k\pi \)
c) \(2 \csc x^{2} - 8 = 0\) solutions: \( x = \sqrt{\arccsc(4) + 2k\pi}, -\sqrt{\arccsc(4) + 2k\pi}, \sqrt{-\arccsc(4) + \pi + 2k\pi}, -\sqrt{-\arccsc(4) + \pi + 2k\pi} \)
Solución
Solve the equation \( 2 \sin 2x - \sin x = 0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2\sin\left(2x\right)-\sin\left(x\right)=0\)
- step1: Rewrite the expression:
\(2\times 2\sin\left(x\right)\cos\left(x\right)-\sin\left(x\right)=0\)
- step2: Simplify:
\(4\sin\left(x\right)\cos\left(x\right)-\sin\left(x\right)=0\)
- step3: Factor the expression:
\(\sin\left(x\right)\left(4\cos\left(x\right)-1\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&\sin\left(x\right)=0\\&4\cos\left(x\right)-1=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=k\pi ,k \in \mathbb{Z}\\&x=\left\{ \begin{array}{l}-\arccos\left(\frac{1}{4}\right)+2k\pi \\\arccos\left(\frac{1}{4}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\)
- step6: Find the union:
\(x=\left\{ \begin{array}{l}-\arccos\left(\frac{1}{4}\right)+2k\pi \\k\pi \\\arccos\left(\frac{1}{4}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\)
Solve the equation \( \cos 2x + \sin^{2}x - 4\cos x + 3 = 0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\cos\left(2x\right)+\sin^{2}\left(x\right)-4\cos\left(x\right)+3=0\)
- step1: Rewrite the expression:
\(2\cos^{2}\left(x\right)-1+\sin^{2}\left(x\right)-4\cos\left(x\right)+3=0\)
- step2: Expand the expression:
\(2\cos^{2}\left(x\right)+2+\sin^{2}\left(x\right)-4\cos\left(x\right)=0\)
- step3: Rewrite the expression:
\(\cos^{2}\left(x\right)+3-4\cos\left(x\right)=0\)
- step4: Factor the expression:
\(\left(\cos\left(x\right)-3\right)\left(\cos\left(x\right)-1\right)=0\)
- step5: Separate into possible cases:
\(\begin{align}&\cos\left(x\right)-3=0\\&\cos\left(x\right)-1=0\end{align}\)
- step6: Solve the equation:
\(\begin{align}&x \notin \mathbb{R}\\&x=2k\pi ,k \in \mathbb{Z}\end{align}\)
- step7: Find the union:
\(x=2k\pi ,k \in \mathbb{Z}\)
Solve the equation \( 2 \csc x^{2} - 8 = 0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2\csc\left(x^{2}\right)-8=0\)
- step1: Move the constant to the right side:
\(2\csc\left(x^{2}\right)=0+8\)
- step2: Remove 0:
\(2\csc\left(x^{2}\right)=8\)
- step3: Divide both sides:
\(\frac{2\csc\left(x^{2}\right)}{2}=\frac{8}{2}\)
- step4: Divide the numbers:
\(\csc\left(x^{2}\right)=4\)
- step5: Use the inverse trigonometric function:
\(x^{2}=\operatorname{arccsc}\left(4\right)\)
- step6: Calculate:
\(\begin{align}&x^{2}=\operatorname{arccsc}\left(4\right)\\&x^{2}=-\operatorname{arccsc}\left(4\right)+\pi \end{align}\)
- step7: Add the period:
\(\begin{align}&x^{2}=\operatorname{arccsc}\left(4\right)+2k\pi ,k \in \mathbb{Z}\\&x^{2}=-\operatorname{arccsc}\left(4\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\)
- step8: Calculate:
\(\begin{align}&x=\left\{ \begin{array}{l}\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\\-\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\end{array}\right.,k \in \mathbb{Z}\\&x^{2}=-\operatorname{arccsc}\left(4\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\)
- step9: Calculate:
\(\begin{align}&x=\left\{ \begin{array}{l}\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\\-\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\end{array}\right.,k \in \mathbb{Z}\\&x=\left\{ \begin{array}{l}\sqrt{-\operatorname{arccsc}\left(4\right)+\pi +2k\pi }\\-\sqrt{-\operatorname{arccsc}\left(4\right)+\pi +2k\pi }\end{array}\right.,k \in \mathbb{Z}\end{align}\)
- step10: Find the union:
\(x=\left\{ \begin{array}{l}\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\\-\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\\\sqrt{-\operatorname{arccsc}\left(4\right)+\pi +2k\pi }\\-\sqrt{-\operatorname{arccsc}\left(4\right)+\pi +2k\pi }\end{array}\right.,k \in \mathbb{Z}\)
The solutions to the trigonometric equations over the interval \(0 \leq x \leq 2\pi\) are as follows:
a) \(2 \sin 2x - \sin x = 0\)
The solutions are:
\[ x = -\arccos\left(\frac{1}{4}\right) + 2k\pi \]
\[ x = k\pi \]
\[ x = \arccos\left(\frac{1}{4}\right) + 2k\pi \]
where \(k\) is an integer.
b) \(\cos 2x + \sin^{2}x - 4\cos x + 3 = 0\)
The solution is:
\[ x = 2k\pi \]
where \(k\) is an integer.
c) \(2 \csc x^{2} - 8 = 0\)
The solutions are:
\[ x = \sqrt{\arccsc(4) + 2k\pi} \]
\[ x = -\sqrt{\arccsc(4) + 2k\pi} \]
\[ x = \sqrt{-\arccsc(4) + \pi + 2k\pi} \]
\[ x = -\sqrt{-\arccsc(4) + \pi + 2k\pi} \]
where \(k\) is an integer.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución