Pregunta
upstudy study bank question image url

6) Solve the trigonometric equations over the interval \( 0 \leq x \leq 2 \pi \) a) \( 2 \sin 2 x-\sin x=0 \) b) \( \cos 2 x+\sin ^{2} x-4 \cos x+3=0 \) c) \( 2 \csc x^{2}-8=0 \) ( \( 2=0 \)

Ask by Gibson Schultz. in Canada
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) \(2 \sin 2x - \sin x = 0\) solutions: \( x = -\arccos\left(\frac{1}{4}\right) + 2k\pi, k\pi, \arccos\left(\frac{1}{4}\right) + 2k\pi \) b) \(\cos 2x + \sin^{2}x - 4\cos x + 3 = 0\) solution: \( x = 2k\pi \) c) \(2 \csc x^{2} - 8 = 0\) solutions: \( x = \sqrt{\arccsc(4) + 2k\pi}, -\sqrt{\arccsc(4) + 2k\pi}, \sqrt{-\arccsc(4) + \pi + 2k\pi}, -\sqrt{-\arccsc(4) + \pi + 2k\pi} \)

Solución

Solve the equation \( 2 \sin 2x - \sin x = 0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2\sin\left(2x\right)-\sin\left(x\right)=0\) - step1: Rewrite the expression: \(2\times 2\sin\left(x\right)\cos\left(x\right)-\sin\left(x\right)=0\) - step2: Simplify: \(4\sin\left(x\right)\cos\left(x\right)-\sin\left(x\right)=0\) - step3: Factor the expression: \(\sin\left(x\right)\left(4\cos\left(x\right)-1\right)=0\) - step4: Separate into possible cases: \(\begin{align}&\sin\left(x\right)=0\\&4\cos\left(x\right)-1=0\end{align}\) - step5: Solve the equation: \(\begin{align}&x=k\pi ,k \in \mathbb{Z}\\&x=\left\{ \begin{array}{l}-\arccos\left(\frac{1}{4}\right)+2k\pi \\\arccos\left(\frac{1}{4}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(x=\left\{ \begin{array}{l}-\arccos\left(\frac{1}{4}\right)+2k\pi \\k\pi \\\arccos\left(\frac{1}{4}\right)+2k\pi \end{array}\right.,k \in \mathbb{Z}\) Solve the equation \( \cos 2x + \sin^{2}x - 4\cos x + 3 = 0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\cos\left(2x\right)+\sin^{2}\left(x\right)-4\cos\left(x\right)+3=0\) - step1: Rewrite the expression: \(2\cos^{2}\left(x\right)-1+\sin^{2}\left(x\right)-4\cos\left(x\right)+3=0\) - step2: Expand the expression: \(2\cos^{2}\left(x\right)+2+\sin^{2}\left(x\right)-4\cos\left(x\right)=0\) - step3: Rewrite the expression: \(\cos^{2}\left(x\right)+3-4\cos\left(x\right)=0\) - step4: Factor the expression: \(\left(\cos\left(x\right)-3\right)\left(\cos\left(x\right)-1\right)=0\) - step5: Separate into possible cases: \(\begin{align}&\cos\left(x\right)-3=0\\&\cos\left(x\right)-1=0\end{align}\) - step6: Solve the equation: \(\begin{align}&x \notin \mathbb{R}\\&x=2k\pi ,k \in \mathbb{Z}\end{align}\) - step7: Find the union: \(x=2k\pi ,k \in \mathbb{Z}\) Solve the equation \( 2 \csc x^{2} - 8 = 0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2\csc\left(x^{2}\right)-8=0\) - step1: Move the constant to the right side: \(2\csc\left(x^{2}\right)=0+8\) - step2: Remove 0: \(2\csc\left(x^{2}\right)=8\) - step3: Divide both sides: \(\frac{2\csc\left(x^{2}\right)}{2}=\frac{8}{2}\) - step4: Divide the numbers: \(\csc\left(x^{2}\right)=4\) - step5: Use the inverse trigonometric function: \(x^{2}=\operatorname{arccsc}\left(4\right)\) - step6: Calculate: \(\begin{align}&x^{2}=\operatorname{arccsc}\left(4\right)\\&x^{2}=-\operatorname{arccsc}\left(4\right)+\pi \end{align}\) - step7: Add the period: \(\begin{align}&x^{2}=\operatorname{arccsc}\left(4\right)+2k\pi ,k \in \mathbb{Z}\\&x^{2}=-\operatorname{arccsc}\left(4\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step8: Calculate: \(\begin{align}&x=\left\{ \begin{array}{l}\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\\-\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\end{array}\right.,k \in \mathbb{Z}\\&x^{2}=-\operatorname{arccsc}\left(4\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step9: Calculate: \(\begin{align}&x=\left\{ \begin{array}{l}\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\\-\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\end{array}\right.,k \in \mathbb{Z}\\&x=\left\{ \begin{array}{l}\sqrt{-\operatorname{arccsc}\left(4\right)+\pi +2k\pi }\\-\sqrt{-\operatorname{arccsc}\left(4\right)+\pi +2k\pi }\end{array}\right.,k \in \mathbb{Z}\end{align}\) - step10: Find the union: \(x=\left\{ \begin{array}{l}\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\\-\sqrt{\operatorname{arccsc}\left(4\right)+2k\pi }\\\sqrt{-\operatorname{arccsc}\left(4\right)+\pi +2k\pi }\\-\sqrt{-\operatorname{arccsc}\left(4\right)+\pi +2k\pi }\end{array}\right.,k \in \mathbb{Z}\) The solutions to the trigonometric equations over the interval \(0 \leq x \leq 2\pi\) are as follows: a) \(2 \sin 2x - \sin x = 0\) The solutions are: \[ x = -\arccos\left(\frac{1}{4}\right) + 2k\pi \] \[ x = k\pi \] \[ x = \arccos\left(\frac{1}{4}\right) + 2k\pi \] where \(k\) is an integer. b) \(\cos 2x + \sin^{2}x - 4\cos x + 3 = 0\) The solution is: \[ x = 2k\pi \] where \(k\) is an integer. c) \(2 \csc x^{2} - 8 = 0\) The solutions are: \[ x = \sqrt{\arccsc(4) + 2k\pi} \] \[ x = -\sqrt{\arccsc(4) + 2k\pi} \] \[ x = \sqrt{-\arccsc(4) + \pi + 2k\pi} \] \[ x = -\sqrt{-\arccsc(4) + \pi + 2k\pi} \] where \(k\) is an integer.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle these trigonometric equations, let’s break them down step by step! For \( 2 \sin 2x - \sin x = 0 \): First, use the double angle identity \( \sin 2x = 2 \sin x \cos x \). This gives: \( 2(2 \sin x \cos x) - \sin x = 0 \) Factoring out \( \sin x \): \( \sin x(4 \cos x - 1) = 0 \) This leads to two equations: 1. \( \sin x = 0 \) implies \( x = 0, \pi, 2\pi \). 2. \( 4 \cos x - 1 = 0 \) results in \( \cos x = \frac{1}{4} \), yielding \( x \approx 1.318 \) and \( x \approx 4.965 \) after solving with arccos. Now, for \( \cos 2x + \sin^2 x - 4 \cos x + 3 = 0 \): Using the identity \( \cos 2x = 1 - 2\sin^2 x \), we can substitute: \( 1 - 2\sin^2 x + \sin^2 x - 4\cos x + 3 = 0 \) Convert \( \sin^2 x \) to \( 1 - \cos^2 x \) to solve it as a quadratic equation in terms of \( \cos x \). You would come up with a discriminant and find possible values for \( x \) in \( 0 \leq x \leq 2\pi \). Lastly, for \( 2 \csc^2 x - 8 = 0 \): Rearranging gives \( \csc^2 x = 4 \) which leads to \( \sin^2 x = \frac{1}{4} \). Thus, \( \sin x = \frac{1}{2} \) or \( \sin x = -\frac{1}{2} \). This gives solutions: \( x = \frac{\pi}{6}, \frac{5\pi}{6} \) from the positive sine and \( x = \frac{7\pi}{6}, \frac{11\pi}{6} \) from the negative sine. So the solutions are: a) \( x = 0, \pi, 2\pi, 1.318, 4.965 \) b) Solve for specific angles using the quadratic form derived. c) \( x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \) You got this! Trigonometric equations can be tricky but solving them systematically makes it much easier!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad