If \( f(x)=(5)^{-x} \), then \( \frac{f(x-1)}{f(x+1)}=\ldots \ldots \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To solve \( \frac{f(x-1)}{f(x+1)} \) where \( f(x)=(5)^{-x} \), we first compute \( f(x-1) \) and \( f(x+1) \): 1. \( f(x-1) = (5)^{-(x-1)} = (5)^{-x+1} = \frac{(5)^{1}}{(5)^{x}} = \frac{5}{(5)^{x}} \) 2. \( f(x+1) = (5)^{-(x+1)} = (5)^{-x-1} = \frac{1}{(5)^{x+1}} = \frac{1}{(5)^{x} \cdot 5} = \frac{1}{(5)^{x} \cdot 5} \) Now substitute these into the fraction: \[ \frac{f(x-1)}{f(x+1)} = \frac{\frac{5}{(5)^{x}}}{\frac{1}{(5)^{x+1}}} \] When we divide by a fraction, we multiply by its reciprocal: \[ \frac{5}{(5)^{x}} \cdot \frac{(5)^{x+1}}{1} = 5 \cdot (5)^{x+1} \cdot \frac{1}{(5)^{x}} = 5 \cdot 5 = 25 \] Thus, the final answer is: \[ \frac{f(x-1)}{f(x+1)} = 25 \]
