Use the properties of logarithms to evaluate each of the following expressions. (a) \( \log _{6} 9+2 \log _{6} 2=\square \) (b) \( \ln e^{8}-\ln e^{2} \) (b)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To evaluate \( \log_{6} 9 + 2 \log_{6} 2 \), we apply the properties of logarithms. First, recognize that \( 2 \log_{6} 2 \) can be rewritten as \( \log_{6} (2^2) = \log_{6} 4 \). Therefore, our expression becomes \( \log_{6} 9 + \log_{6} 4 = \log_{6} (9 \cdot 4) = \log_{6} 36 \). Since \( 36 = 6^2 \), we have \( \log_{6} 36 = 2 \). For \( \ln e^{8} - \ln e^{2} \), we can use the property that states \( \ln a - \ln b = \ln \left( \frac{a}{b} \right) \). That gives us \( \ln \left( \frac{e^{8}}{e^{2}} \right) = \ln \left( e^{8-2} \right) = \ln e^{6} \). Since \( \ln e^{x} = x \), we finally find that \( \ln e^{6} = 6 \).
