Responder
Solutions:
1.1.1: \( x = -\frac{2}{5} \) or \( x = \frac{4}{3} \)
1.1.2: \( x = -3 \)
1.2: Mary originally had R225.
2.1.1: \( x = 4 \)
2.1.2: \( x = 5 \)
2.2.1: \( x = -3 \), \( x = 0 \), \( x = 3 \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{x}=\frac{1}{125}\)
- step1: Rewrite in exponential form:
\(5^{x}=5^{-3}\)
- step2: Set the exponents equal:
\(x=-3\)
Solve the equation \( x^{3}=9 x \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{3}=9x\)
- step1: Move the expression to the left side:
\(x^{3}-9x=0\)
- step2: Factor the expression:
\(x\left(x^{2}-9\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&x=0\\&x^{2}-9=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=0\\&x=3\\&x=-3\end{align}\)
- step5: Rewrite:
\(x_{1}=-3,x_{2}=0,x_{3}=3\)
Solve the system of equations \( \frac{1}{3}m=\frac{1}{5}m+30; \frac{1}{3}m=\frac{1}{5}m+30 \).
Solve the system of equations by following steps:
- step0: Solution:
\(\left\{ \begin{array}{l}\frac{1}{3}m=\frac{1}{5}m+30\\\frac{1}{3}m=\frac{1}{5}m+30\end{array}\right.\)
- step1: Calculate:
\(\left\{ \begin{array}{l}m=225\\m=225\end{array}\right.\)
- step2: Find the intersection:
\(m=225\)
- step3: Check the solution:
\(m=225\)
Solve the equation \( 15 x^{2}-8=14 x \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(15x^{2}-8=14x\)
- step1: Move the expression to the left side:
\(15x^{2}-8-14x=0\)
- step2: Factor the expression:
\(\left(3x-4\right)\left(5x+2\right)=0\)
- step3: Separate into possible cases:
\(\begin{align}&3x-4=0\\&5x+2=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=\frac{4}{3}\\&x=-\frac{2}{5}\end{align}\)
- step5: Rewrite:
\(x_{1}=-\frac{2}{5},x_{2}=\frac{4}{3}\)
Solve the equation \( \frac{x}{x-3}-\frac{x}{2-x}=\frac{2 x^{2}-25}{x^{2}-5 x+6} \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\frac{x}{x-3}-\frac{x}{2-x}=\frac{2x^{2}-25}{x^{2}-5x+6}\)
- step1: Find the domain:
\(\frac{x}{x-3}-\frac{x}{2-x}=\frac{2x^{2}-25}{x^{2}-5x+6},x \in \left(-\infty,2\right)\cup \left(2,3\right)\cup \left(3,+\infty\right)\)
- step2: Multiply both sides of the equation by LCD:
\(\left(\frac{x}{x-3}-\frac{x}{2-x}\right)\left(-x+2\right)\left(x-3\right)=\frac{2x^{2}-25}{x^{2}-5x+6}\times \left(-x+2\right)\left(x-3\right)\)
- step3: Simplify the equation:
\(5x-2x^{2}=-2x^{2}+25\)
- step4: Cancel equal terms:
\(5x=25\)
- step5: Divide both sides:
\(\frac{5x}{5}=\frac{25}{5}\)
- step6: Divide the numbers:
\(x=5\)
- step7: Check if the solution is in the defined range:
\(x=5,x \in \left(-\infty,2\right)\cup \left(2,3\right)\cup \left(3,+\infty\right)\)
- step8: Find the intersection:
\(x=5\)
Let's solve the problems step by step.
### Question 1
#### 1.1. Solve for \( x \):
**1.1.1.** \( 15 x^{2}-8=14 x \)
To solve this equation, we rearrange it into standard quadratic form:
\[
15x^2 - 14x - 8 = 0
\]
Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 15 \), \( b = -14 \), and \( c = -8 \):
The solutions are:
\[
x_{1} = -\frac{2}{5}, \quad x_{2} = \frac{4}{3}
\]
**1.1.2.** \( 5^{x}=\frac{1}{125} \)
We can rewrite \( \frac{1}{125} \) as \( 5^{-3} \):
\[
5^{x} = 5^{-3}
\]
Thus, we have:
\[
x = -3
\]
#### 1.2. Mary gave one third of her money to Nathan and one fifth to Elias.
Let \( m \) be the total amount of money Mary had. According to the problem:
- Nathan received \( \frac{1}{3}m \)
- Elias received \( \frac{1}{5}m \)
We know that Elias received R30 less than Nathan:
\[
\frac{1}{5}m = \frac{1}{3}m - 30
\]
To solve for \( m \), we can rearrange and solve the equation:
\[
\frac{1}{3}m - \frac{1}{5}m = 30
\]
Finding a common denominator (15):
\[
\frac{5}{15}m - \frac{3}{15}m = 30
\]
This simplifies to:
\[
\frac{2}{15}m = 30
\]
Multiplying both sides by \( \frac{15}{2} \):
\[
m = 225
\]
### Question 2
#### 2.1. Solve for \( x \):
**2.1.1.** \( \sqrt[x]{16}=2 \)
This can be rewritten as:
\[
16^{\frac{1}{x}} = 2
\]
Since \( 16 = 2^4 \):
\[
(2^4)^{\frac{1}{x}} = 2
\]
This simplifies to:
\[
2^{\frac{4}{x}} = 2^1
\]
Thus, we have:
\[
\frac{4}{x} = 1 \implies x = 4
\]
**2.1.2.** \( \frac{x}{x-3}-\frac{x}{2-x}=\frac{2 x^{2}-25}{x^{2}-5 x+6} \)
This equation can be solved, and the solution is:
\[
x = 5
\]
#### 2.2. Solve for \( x \) without the use of a calculator:
**2.2.1.** \( x^{3}=9 x \)
Rearranging gives:
\[
x^{3} - 9x = 0
\]
Factoring out \( x \):
\[
x(x^{2} - 9) = 0
\]
This gives us:
\[
x = 0, \quad x^{2} - 9 = 0 \implies x = 3, \quad x = -3
\]
Thus, the solutions are:
\[
x_{1} = -3, \quad x_{2} = 0, \quad x_{3} = 3
\]
### Summary of Solutions:
1.1.1: \( x_{1} = -\frac{2}{5}, x_{2} = \frac{4}{3} \)
1.1.2: \( x = -3 \)
1.2: \( m = 225 \)
2.1.1: \( x = 4 \)
2.1.2: \( x = 5 \)
2.2.1: \( x_{1} = -3, x_{2} = 0, x_{3} = 3 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución