Which point would be a solution to the system of linear inequalities shown below? \[ y>-4 x+6 \quad y>\frac{1}{3} x-7 \] Answer \( \begin{array}{ll}(9,-7) & (-12,-2) \\ (12,1) & (-12,-7)\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To determine which points satisfy both inequalities, we can substitute the coordinates of each point into the inequalities. For point \( (9, -7) \): 1. \( -7 > -4(9) + 6 \) → \( -7 > -36 + 6 \) → \( -7 > -30 \) (True) 2. \( -7 > \frac{1}{3}(9) - 7 \) → \( -7 > 3 - 7 \) → \( -7 > -4 \) (False) For point \( (-12, -2) \): 1. \( -2 > -4(-12) + 6 \) → \( -2 > 48 + 6 \) → \( -2 > 54 \) (False) For point \( (12, 1) \): 1. \( 1 > -4(12) + 6 \) → \( 1 > -48 + 6 \) → \( 1 > -42 \) (True) 2. \( 1 > \frac{1}{3}(12) - 7 \) → \( 1 > 4 - 7 \) → \( 1 > -3 \) (True) For point \( (-12, -7) \): 1. \( -7 > -4(-12) + 6 \) → \( -7 > 48 + 6 \) → \( -7 > 54 \) (False) Thus, the only point that is a solution to the system of inequalities is \( (12, 1) \).
