Pregunta
upstudy study bank question image url

Write \( g(x)=-16 x+x^{2} \) in vertex form. \( \begin{array}{ll}\text { 1. Write the function in standard form. } & g(x)=x^{2}-16 x \\ \text { 2. Form a perfect square trinomial by adding and } & b=-16 \text {, so }\left(\frac{-16}{2}\right)^{2}=64 \\ \text { subtracting }\left(\frac{b}{2}\right)^{2} & g(x)=\left(x^{2}-16 x+64\right)-64 \\ \text { 3. Write the trinomial as a binomial squared. } & g(x)=(x-\square \\ \text { 4. Write the function is in vertex form, if needed. }\end{array} \)

Ask by Harper Erickson. in the United States
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( g(x) \) in vertex form is \( g(x) = (x - 8)^2 - 64 \).

Solución

To write the function \( g(x) = -16x + x^2 \) in vertex form, we will follow the steps outlined in your problem. Let's go through each step carefully. ### Step 1: Write the function in standard form The function is already given in standard form as: \[ g(x) = x^2 - 16x \] ### Step 2: Form a perfect square trinomial To form a perfect square trinomial, we need to add and subtract \(\left(\frac{b}{2}\right)^2\), where \(b = -16\). Calculating \(\left(\frac{-16}{2}\right)^2\): \[ \left(\frac{-16}{2}\right)^2 = (-8)^2 = 64 \] Now, we can add and subtract 64 in the function: \[ g(x) = (x^2 - 16x + 64) - 64 \] ### Step 3: Write the trinomial as a binomial squared The trinomial \(x^2 - 16x + 64\) can be factored as: \[ g(x) = (x - 8)^2 - 64 \] ### Step 4: Write the function in vertex form The vertex form of a quadratic function is given by: \[ g(x) = a(x - h)^2 + k \] where \((h, k)\) is the vertex of the parabola. From our expression, we can see that: - \(a = 1\) - \(h = 8\) - \(k = -64\) Thus, the vertex form of the function is: \[ g(x) = (x - 8)^2 - 64 \] ### Final Answer The function \( g(x) \) in vertex form is: \[ g(x) = (x - 8)^2 - 64 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To rewrite \( g(x) = -16 x + x^2 \) in vertex form, we start with the expression in standard form, which is \( g(x) = x^2 - 16x \). By completing the square, we add and then subtract 64 (since \( \left(-\frac{16}{2}\right)^2 = 64 \)). This gives us \( g(x) = (x^2 - 16x + 64) - 64 \), which simplifies to \( g(x) = (x - 8)^2 - 64 \). Thus, the vertex form of the function is \( g(x) = -(x - 8)^2 - 64 \). Knowing how to convert functions into vertex form can significantly aid in graphing quadratic functions. The vertex form highlights key features like the vertex, which is the minimum or maximum point of the parabola, depending on whether it opens upwards or downwards. For this function, the vertex is at the point (8, -64), making it super easy to plot and understand the graph's behavior! A common mistake when completing the square is forgetting to modify the original function appropriately when adding a constant. It’s essential to both add and subtract the square of half the coefficient of \( x \) to ensure you are not changing the equation’s value. For instance, neglecting the subtraction of 64 here would lead to miscalculating the vertex and skewing the function's overall shape! Remember, balance is key!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad