Pregunta
upstudy study bank question image url

ACTIVITY \( 6: ~\{2 \) Marks \( \} \) Explain why the roots of \( a x^{2}+b x+c=0 \) will be the \( x \)-intercepts of the parabola.

Ask by Long Savage. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The roots of the quadratic equation \( ax^2 + bx + c = 0 \) are the points where the parabola crosses the \( x \)-axis, so they are the \( x \)-intercepts of the parabola.

Solución

To understand why the roots of the quadratic equation \( ax^2 + bx + c = 0 \) correspond to the \( x \)-intercepts of the parabola represented by the equation, we can follow these steps: 1. **Definition of Roots**: The roots of the equation \( ax^2 + bx + c = 0 \) are the values of \( x \) for which the equation equals zero. In other words, if \( r_1 \) and \( r_2 \) are the roots, then: \[ a r_1^2 + b r_1 + c = 0 \] \[ a r_2^2 + b r_2 + c = 0 \] 2. **Graph of the Quadratic Function**: The equation \( y = ax^2 + bx + c \) represents a parabola in the Cartesian coordinate system. The shape of the parabola (opening upwards or downwards) depends on the coefficient \( a \): - If \( a > 0 \), the parabola opens upwards. - If \( a < 0 \), the parabola opens downwards. 3. **Finding \( x \)-Intercepts**: The \( x \)-intercepts of a graph are the points where the graph crosses the \( x \)-axis. At these points, the value of \( y \) is zero. Therefore, to find the \( x \)-intercepts, we set the equation of the parabola equal to zero: \[ ax^2 + bx + c = 0 \] 4. **Conclusion**: Since the roots \( r_1 \) and \( r_2 \) are the solutions to the equation \( ax^2 + bx + c = 0 \), they represent the \( x \)-values where the parabola intersects the \( x \)-axis. Thus, the roots of the quadratic equation are indeed the \( x \)-intercepts of the parabola. In summary, the roots of the quadratic equation \( ax^2 + bx + c = 0 \) correspond to the \( x \)-intercepts of the parabola because they are the values of \( x \) that make the equation equal to zero, indicating where the graph crosses the \( x \)-axis.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The roots of the quadratic equation \( a x^{2} + b x + c = 0 \) are the values of \( x \) for which the equation equals zero. In a graphical sense, this means that at these points, the parabola intersects the \( x \)-axis. Since the \( y \)-coordinate of any point on the \( x \)-axis is zero, finding where the parabola meets this line reveals the \( x \)-intercepts, which are precisely the roots of the equation. When you graph a parabola, the \( x \)-intercepts serve as crucial points, called the "zeros" of the function. They tell us not only where the parabola crosses the axis but also give insight into the behavior of the quadratic function. If the discriminant (the part under the square root in the quadratic formula) is positive, there are two distinct roots; if it's zero, there’s one root (the vertex touches the axis), and if it's negative, the parabola doesn’t intersect the \( x \)-axis at all!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad