\( 3 x_{1}+2 x_{2}=6 \) \( 4 x_{1}+4 x_{2}=8 \) find \( x_{1} \) and \( x_{2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the given system of equations, we can use substitution or elimination. Let's start with the first equation: 1. From \( 3 x_{1} + 2 x_{2} = 6 \), we can express \( x_{2} \) in terms of \( x_{1} \): \[ 2 x_{2} = 6 - 3 x_{1} \implies x_{2} = 3 - \frac{3}{2} x_{1} \] 2. Now, substitute \( x_{2} \) into the second equation: \[ 4 x_{1} + 4(3 - \frac{3}{2} x_{1}) = 8 \] Simplifying this gives: \[ 4 x_{1} + 12 - 6 x_{1} = 8 \implies -2 x_{1} + 12 = 8 \implies -2 x_{1} = -4 \implies x_{1} = 2 \] 3. Substitute \( x_{1} = 2 \) back into the expression for \( x_{2} \): \[ x_{2} = 3 - \frac{3}{2}(2) = 3 - 3 = 0 \] Thus, the solution is \( x_{1} = 2 \) and \( x_{2} = 0 \).
