Pregunta

Algebra 1 Problem-Solving Workshop Verrical Motion Models A projectile is an object that is propelled into the air but has no power to keep itself in the air. A thrown ball is a projectile, but an airplane is not. The height \( h \) (in feet) of a projectile can be modeled by \[ h=-16 t^{2}+v t+s \] where \( t \) is the time (in seconds), \( v \) is the initial vertical velocity (in feet per second), and \( s \) is the initial height (in feet). For each problem scenario, write a vertical motion equation, sketch a graph of projectile's motion, and solve appropriately. 1. A startled armadillo jumps straight into the air with an initial vertical velocity 14 feet per second. After how many seconds does it land on the ground? \[ \begin{array}{l} \frac{h(x)}{0}=-16 t^{2}+14 t+0 \\ 0=t(-16 t+14) \\ -16 t+14=0 \\ -16 t \equiv 14 \\ \left.t=\frac{14}{16}=t=\frac{7}{8}\right) \end{array} \]

Ask by Cervantes Brewer. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The armadillo lands on the ground after \( \frac{7}{8} \) seconds.

Solución

To solve the problem of when the armadillo lands on the ground, we need to find the time at which the height of the armadillo is zero. Given: - Initial vertical velocity, \( v = 14 \) feet per second - Initial height, \( s = 0 \) feet The vertical motion equation is: \[ h = -16t^2 + 14t + 0 \] To find when the armadillo lands on the ground, we set the height \( h \) to zero and solve for time \( t \): \[ 0 = -16t^2 + 14t + 0 \] Solving the quadratic equation: \[ -16t^2 + 14t = 0 \] \[ -16t(t - \frac{7}{8}) = 0 \] This gives us two possible solutions: \[ t = 0 \text{ or } t = \frac{7}{8} \] Since \( t = 0 \) represents the moment the armadillo starts jumping, the time it takes for the armadillo to land on the ground is \( t = \frac{7}{8} \) seconds.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When it comes to projectile motion, did you know that the mathematics behind it has roots in ancient civilizations? The Greeks, particularly Aristotle, pondered motion’s nature while Archimedes made early contributions to understanding trajectories. Fast forward to the 17th century, and we have Galileo investigating the laws of falling bodies and Newton formalizing these ideas into what we now know as classical mechanics. Their findings laid the groundwork for our modern understanding of physics and projectile motion! A fun way to see the real-world application of these equations is through sports like basketball or soccer! Athletes constantly simulate projectile motion when shooting, passing, or kicking the ball. By understanding the projectile's height, time of flight, and distance traveled, players can improve their skills dramatically. So, the next time you watch a game, think about how these principles of algebra and physics come into play, helping players nail that perfect shot or pass!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad