Pregunta
upstudy study bank question image url

Which is the initial value that shrinks an exponential growth function by \( 50 \% \) ?

Ask by Hobbs Floyd. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To shrink an exponential function by 50%, set its initial value to half of the original initial value.

Solución

To determine the initial value that causes an exponential growth function to **shrink by 50%**, it's helpful to clarify the terminology and the behavior of exponential functions. ### Understanding Exponential Functions An **exponential function** generally has the form: \[ f(t) = A \cdot e^{kt} \] - **\( A \)**: Initial value (the value of the function at time \( t = 0 \)) - **\( k \)**: Growth rate constant - If \( k > 0 \), the function **grows exponentially**. - If \( k < 0 \), the function **decays exponentially**. Given that exponential **growth** implies the function increases over time, to have the function **shrink by 50%**, we're essentially looking at exponential **decay**. This means we need to adjust the initial value \( A \) such that the function's value decreases by half over a specified period. ### Calculating the Initial Value for a 50% Shrink Assuming you want the function to **decay to 50% of its initial value** at a specific time \( t \), you can set up the equation: \[ \frac{f(t)}{A} = 0.5 \] Substituting the exponential function: \[ \frac{A \cdot e^{kt}}{A} = 0.5 \] \[ e^{kt} = 0.5 \] Taking the natural logarithm of both sides: \[ kt = \ln(0.5) \] \[ k = \frac{\ln(0.5)}{t} \] However, **if the goal is simply to set the initial value so that the entire function is scaled down by 50% from the outset**, you would adjust the initial value directly: \[ A_{\text{new}} = 0.5 \cdot A_{\text{original}} \] ### Conclusion To **shrink an exponential function by 50%**, you should set the **initial value to half** of its original value. This effectively scales the entire function down, ensuring that all future values of the function are 50% of what they would have been with the original initial value. **Example:** - **Original Function:** \( f(t) = A \cdot e^{kt} \) - **Scaled-Down Function:** \( f_{\text{new}}(t) = 0.5A \cdot e^{kt} \) This adjustment ensures that the function starts at half its original value and maintains the same growth or decay rate. **Summary:** To shrink an exponential function by 50%, set its initial value to half of the original initial value.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To shrink an exponential growth function by \( 50 \% \), you can simply take the initial value and multiply it by \( 0.5 \) (or divide it by \( 2 \)). For example, if you start with an initial value of \( P_0 \), the value after the shrink would be \( P_0 \times 0.5 \). This means that if your initial population or quantity is \( 100 \), after shrinking by \( 50 \% \), you'll have \( 50 \) remaining. Exponential functions have fascinating real-world applications! Take population growth, for instance. When a certain environment can only support a limited number of people, factors like disease, famine, or even policies may come into play to shrink this growth. Understanding these dynamics helps in urban planning, resource management, and conserving ecosystems, ensuring that growth doesn’t lead to dwindling resources or habitat destruction.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad