Pregunta
upstudy study bank question image url

Which point would be a solution to the system of linear inequalities shown below? \[ y \leq-2 x-6 \quad y \geq-\frac{5}{2} x-8 \] Answer \( \begin{array}{ll}(12,-4) & (-2,-3) \\ (12,-6) & (2,6)\end{array} \)

Ask by Dickson Wood. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The point (-2, -3) is a solution to the system of inequalities.

Solución

To determine which point is a solution, substitute each point into the inequalities: Inequality 1: y ≤ -2x - 6 Inequality 2: y ≥ - (5/2)x - 8 Let's test the points: 1. For (12, -4): • Inequality 1: -4 ≤ -2(12) - 6 = -24 - 6 = -30. Since -4 is not ≤ -30, (12, -4) fails. 2. For (-2, -3): • Inequality 1: -3 ≤ -2(-2) - 6 = 4 - 6 = -2, so -3 ≤ -2 holds. • Inequality 2: -3 ≥ - (5/2)(-2) - 8. Calculate -(5/2)(-2) = 5, so the inequality becomes -3 ≥ 5 - 8, meaning -3 ≥ -3, which is true. Thus (-2, -3) satisfies both inequalities. 3. For (12, -6): • Inequality 1: -6 ≤ -2(12) - 6 = -24 - 6 = -30. Since -6 is not ≤ -30, (12, -6) fails. 4. For (2, 6): • Inequality 1: 6 ≤ -2(2) - 6 = -4 - 6 = -10. Since 6 is not ≤ -10, (2, 6) fails. The only point that satisfies both inequalities is (-2, -3).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the solutions to the system of inequalities, we can substitute each given point into both inequalities. For example, the point (-2, -3) can be checked against both inequalities. Substituting in the first inequality \(y \leq -2x - 6\) gives \(-3 \leq -2(-2) - 6\), which simplifies to \(-3 \leq -2\), not true. Moving on to the second inequality \(y \geq -\frac{5}{2}x - 8\) gives \(-3 \geq -\frac{5}{2}(-2) - 8\), simplifying to \(-3 \geq -2.5 - 8\), which is true. Therefore, -2, -3 is not a solution to the system. Next, let’s try the point (12, -4). For \(y \leq -2x - 6\): \(-4 \leq -2(12) - 6\) simplifies to \(-4 \leq -30\), which is not true, so this point does not satisfy the first inequality. After testing all the options, we find that (-2, -3) and (12, -6) fail one or both inequalities. The key is finding a point that lies within the overlapping region defined by both inequalities. By graphing or testing points systematically, we can identify points that work. For example, if we find a point like (0, -5) or (0, -7), they might lead us to identify a correct solution that satisfies both inequalities effectively. A common mistake in these types of problems is to only evaluate the inequalities without considering their overlapping regions. Remember that the inequalities need to be true simultaneously for a point to be a solution!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad