Pregunta
upstudy study bank question image url

Jamal puts \( \$ 4,000.00 \) into an account to use for school expenses. The account earns \( 10 \% \) interest, compounded monthly. How much will be in the account after 9 years? Use the formula \( A=P\left(1+\frac{r}{n}\right)^{n t} \), where \( A \) is the balance (final amount), \( P \) is the principal (starting amount), \( r \) is the interest rate expressed as a decimal, \( n \) is the number of times per year that the interest is compounded, and \( t \) is the time in years. Round your answer to the nearest cent.

Ask by Nunez Tran. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 9 years, Jamal will have \$9,801.76 in the account.

Solución

To find the amount in the account after 9 years, we will use the formula for compound interest: \[ A = P\left(1+\frac{r}{n}\right)^{nt} \] Where: - \( A \) is the balance (final amount) - \( P \) is the principal (starting amount) - \( r \) is the interest rate expressed as a decimal - \( n \) is the number of times per year that the interest is compounded - \( t \) is the time in years ### Step 1: Identify the known values - \( P = 4000 \) - \( r = 10\% = 0.10 \) - \( n = 12 \) (since the interest is compounded monthly) - \( t = 9 \) ### Step 2: Substitute the known values into the formula Now we can substitute these values into the formula: \[ A = 4000\left(1+\frac{0.10}{12}\right)^{12 \times 9} \] ### Step 3: Calculate the expression inside the parentheses First, we calculate \( \frac{0.10}{12} \): \[ \frac{0.10}{12} = 0.0083333 \] Now, we can calculate \( 1 + 0.0083333 \): \[ 1 + 0.0083333 = 1.0083333 \] ### Step 4: Calculate the exponent Next, we calculate \( 12 \times 9 \): \[ 12 \times 9 = 108 \] ### Step 5: Calculate the final amount Now we can calculate \( A \): \[ A = 4000 \times (1.0083333)^{108} \] Let's perform this calculation. Calculate the value by following steps: - step0: Calculate: \(4000\times 1.0083333^{108}\) - step1: Convert the expressions: \(4000\left(\frac{10083333}{10000000}\right)^{108}\) - step2: Simplify: \(4000\times \frac{10083333^{108}}{10000000^{108}}\) - step3: Rewrite the expression: \(4000\times \frac{10083333^{108}}{4000^{108}\times 2500^{108}}\) - step4: Reduce the numbers: \(1\times \frac{10083333^{108}}{4000^{107}\times 2500^{108}}\) - step5: Multiply the fractions: \(\frac{10083333^{108}}{4000^{107}\times 2500^{108}}\) The calculation gives us: \[ A \approx 9801.76 \] ### Step 6: Round to the nearest cent Thus, the amount in the account after 9 years will be approximately: \[ \boxed{9801.76} \] So, Jamal will have \( \$ 9,801.76 \) in the account after 9 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the amount in the account after 9 years, we can use the formula: \[ A = P\left(1+\frac{r}{n}\right)^{nt} \] Plugging in the values: - \( P = 4000 \) - \( r = 0.10 \) - \( n = 12 \) (since it’s compounded monthly) - \( t = 9 \) We substitute these values into the formula: \[ A = 4000\left(1+\frac{0.10}{12}\right)^{12 \times 9} \] Calculating \( \frac{0.10}{12} \): \[ \frac{0.10}{12} \approx 0.008333 \] Now, calculate the entire expression: \[ A = 4000\left(1 + 0.008333\right)^{108} \] Calculating \( 1 + 0.008333 \): \[ 1.008333^{108} \approx 2.406619 \] Now multiply by the principal: \[ A \approx 4000 \times 2.406619 \approx 9626.48 \] So, after rounding to the nearest cent, the amount in the account after 9 years will be: \[ \boxed{9626.48} \]

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad