Find all x-intercepts of the following function. Write your answer or answers as coordinate points. Be sure to select the appropriate number of \( x \)-intercepls. \[ f(x)=\frac{3 x^{2}+5 x-28}{2 x^{2}+18 x-20} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the x-intercepts of the function \( f(x) = \frac{3x^{2} + 5x - 28}{2x^{2} + 18x - 20} \), we need to set the numerator equal to zero because x-intercepts occur where the function equals zero. So, we solve: \[ 3x^{2} + 5x - 28 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \), where \( a = 3 \), \( b = 5 \), and \( c = -28 \): 1. Calculate the discriminant: \[ b^{2} - 4ac = 5^{2} - 4 \cdot 3 \cdot (-28) = 25 + 336 = 361 \] 2. Now, use the quadratic formula: \[ x = \frac{-5 \pm \sqrt{361}}{2 \cdot 3} = \frac{-5 \pm 19}{6} \] This gives us two solutions: \[ x = \frac{14}{6} = \frac{7}{3} \quad \text{and} \quad x = \frac{-24}{6} = -4 \] Thus, the x-intercepts are: \( \left(\frac{7}{3}, 0\right) \) and \( (-4, 0) \).
