Pregunta

Show that the equation \( x^{2}+(k-2) x-k=0 \) has real roots for all real values of \( k \text {. } \)

Ask by Martinez Harmon. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation \( x^{2}+(k-2) x-k=0 \) has real roots for all real values of \( k \) because its discriminant \( D = k^2 + 4 \) is always positive.

Solución

To determine whether the equation \( x^{2}+(k-2) x-k=0 \) has real roots for all real values of \( k \), we need to analyze the discriminant of the quadratic equation. The general form of a quadratic equation is given by: \[ ax^2 + bx + c = 0 \] where \( a = 1 \), \( b = k - 2 \), and \( c = -k \) in our case. The discriminant \( D \) of a quadratic equation is calculated using the formula: \[ D = b^2 - 4ac \] Substituting the values of \( a \), \( b \), and \( c \): \[ D = (k - 2)^2 - 4(1)(-k) \] Now, let's simplify this expression step by step: 1. Calculate \( (k - 2)^2 \): \[ (k - 2)^2 = k^2 - 4k + 4 \] 2. Calculate \( -4(1)(-k) \): \[ -4(1)(-k) = 4k \] 3. Combine these results to find \( D \): \[ D = k^2 - 4k + 4 + 4k \] \[ D = k^2 + 4 \] Now, we observe that \( D = k^2 + 4 \). Since \( k^2 \) is always non-negative for all real values of \( k \) (i.e., \( k^2 \geq 0 \)), it follows that: \[ D \geq 4 \] This means that the discriminant \( D \) is always greater than or equal to 4, which is a positive number. Since the discriminant is positive, the quadratic equation \( x^{2}+(k-2) x-k=0 \) has two distinct real roots for all real values of \( k \). Thus, we have shown that the equation has real roots for all real values of \( k \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine if the equation \( x^{2} + (k-2)x - k = 0 \) has real roots for all real values of \( k \), we can analyze the discriminant of the quadratic equation. The standard form of a quadratic equation is \( ax^2 + bx + c = 0 \) where \( a = 1 \), \( b = (k-2) \), and \( c = -k \). The discriminant \( D \) is given by the formula: \[ D = b^2 - 4ac \] Substituting in the values we have: \[ D = (k-2)^2 - 4(1)(-k) \] \[ = (k-2)^2 + 4k \] \[ = k^2 - 4k + 4 + 4k \] \[ = k^2 + 4 \] The expression \( k^2 + 4 \) is always greater than or equal to 4 for all real numbers \( k \) since \( k^2 \) is non-negative. This means that the discriminant \( D \geq 4 > 0 \) for all real \( k \). Since the discriminant is positive, the quadratic equation \( x^{2} + (k-2)x - k = 0 \) will have two distinct real roots for all real values of \( k \). Thus, we can conclude that the equation has real roots for all \( k \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad