Pregunta
upstudy study bank question image url

5. Felix is buying a car and plans to sell it after a few years. The equation \( C=15,000- \) \( 975 m \) models the relation between the cost of the car, \( C \), in dollars and the number of years, \( m \), he had the car. a. Find the cost if Felix sells his car in 5 years. \( C=15,000-975 \mathrm{~m} \) b. Find the year when Felix car is worth \( \$ 6225 \). c. Interpret the slope and \( C \)-intercept of the equation.

Ask by Griffiths Mcfarlane. in Virgin Islands
Dec 04,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The cost after 5 years is $10,125. b. The car is worth $6,225 after 9 years. c. The slope is -975, indicating annual depreciation, and the \( C \)-intercept is 15,000, the initial cost.

Solución

To solve the problem, we will analyze the equation given: \[ C = 15,000 - 975m \] where \( C \) is the cost of the car in dollars and \( m \) is the number of years Felix has owned the car. ### a. Find the cost if Felix sells his car in 5 years. To find the cost after 5 years, we substitute \( m = 5 \) into the equation: \[ C = 15,000 - 975(5) \] Calculating the value: \[ C = 15,000 - 4,875 \] \[ C = 10,125 \] So, the cost of the car after 5 years is **$10,125**. ### b. Find the year when Felix's car is worth $6,225. To find the year when the car is worth $6,225, we set \( C = 6,225 \) and solve for \( m \): \[ 6,225 = 15,000 - 975m \] Rearranging the equation: \[ 975m = 15,000 - 6,225 \] \[ 975m = 8,775 \] Now, divide both sides by 975: \[ m = \frac{8,775}{975} \] \[ m = 9 \] So, Felix's car will be worth **$6,225** after **9 years**. ### c. Interpret the slope and \( C \)-intercept of the equation. 1. **Slope**: The slope of the equation is \(-975\). This means that for each additional year \( m \) that Felix owns the car, the value of the car decreases by $975. This indicates the rate of depreciation of the car's value over time. 2. **\( C \)-intercept**: The \( C \)-intercept is \( 15,000 \). This represents the initial cost of the car when \( m = 0 \) (i.e., when Felix first buys the car). It indicates that the car's value starts at $15,000. In summary: - The slope indicates the annual depreciation of the car's value. - The \( C \)-intercept indicates the initial purchase price of the car.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve Felix's car situation, let's have some fun with the numbers! If Felix sells his car in 5 years, we plug \( m = 5 \) into the equation \( C = 15,000 - 975m \). So, \( C = 15,000 - 975 \times 5 \) gives us \( C = 15,000 - 4,875 = 10,125 \). The cost of the car after 5 years is \( \$10,125 \). Now, for the car to be worth \( \$6225 \), we set the equation equal to that value: \( 6225 = 15,000 - 975m \). Rearranging gives us \( 975m = 15,000 - 6225 \), leading to \( 975m = 8775 \). Dividing both sides by 975, we find \( m = 9 \). So, the car will be worth \( \$6225 \) after 9 years! The slope of the equation, \( -975 \), tells us that the car loses $975 in value for each year it’s owned. The \( C \)-intercept, \( 15,000 \), is the initial cost of the car. So, in summary, Felix can expect his car to depreciate steadily over time—an important feature to remember in car ownership!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad