Pregunta
upstudy study bank question image url

Find \( \mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g}, \mathrm{fg} \) and \( \frac{\mathrm{l}}{\mathrm{g}} \). Determine the domain for each function. \[ f(x)=\frac{3 x+8}{x^{2}-81}, g(x)=\frac{2 x-1}{x^{2}-81} \] A. ine comani oi \( \mathrm{r}+\mathrm{g} \) is \( (-\infty,-y) \cup(-y, y) \cup(y, \infty) \). (Type your answer in interval notation.) B. The domain of \( f+g \) is \( \{\quad\} \). (Use a comma to separate answers as needed.) \( \square \) C. The domain of \( f+g \) is \( \varnothing \). \[ (f-g)(x)=\frac{1}{x-9}(\text { Simplify your answer.) } \] What is the domain of \( f-g \) ? A. The domain of \( f-g \) is \( (-\infty,-9) \cup(-9,9) \cup(9, \infty) \). B. The domain of \( f-g \) is \( \} \). (Use a comma to separate answers as needed.) C. The domain of f fg is \( \varnothing \). \( (\mathrm{fg})(\mathrm{x})= \) \( \square \) \( 3 x+8 \) (Simplify your answer.)

Ask by Carlson Hobbs. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **\( f + g \):** Domain is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - **\( f - g \):** Domain is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - **\( fg \):** Simplified form is \( \frac{6x^2 + 13x - 8}{(x^2 - 81)^2} \). - **\( \frac{f}{g} \):** Domain is \( (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \).

Solución

To solve the problem, we will first find the functions \( f+g \), \( f-g \), \( fg \), and \( \frac{f}{g} \). Then, we will determine the domain for each function. Given: \[ f(x) = \frac{3x + 8}{x^2 - 81}, \quad g(x) = \frac{2x - 1}{x^2 - 81} \] ### Step 1: Find \( f + g \) \[ f + g = \frac{3x + 8}{x^2 - 81} + \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) + (2x - 1)}{x^2 - 81} = \frac{5x + 7}{x^2 - 81} \] ### Step 2: Find \( f - g \) \[ f - g = \frac{3x + 8}{x^2 - 81} - \frac{2x - 1}{x^2 - 81} = \frac{(3x + 8) - (2x - 1)}{x^2 - 81} = \frac{x + 9}{x^2 - 81} \] ### Step 3: Find \( fg \) \[ fg = \left( \frac{3x + 8}{x^2 - 81} \right) \left( \frac{2x - 1}{x^2 - 81} \right) = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \] Now, we will expand the numerator: \[ (3x + 8)(2x - 1) = 6x^2 - 3x + 16x - 8 = 6x^2 + 13x - 8 \] Thus, \[ fg = \frac{6x^2 + 13x - 8}{(x^2 - 81)^2} \] ### Step 4: Find \( \frac{f}{g} \) \[ \frac{f}{g} = \frac{\frac{3x + 8}{x^2 - 81}}{\frac{2x - 1}{x^2 - 81}} = \frac{3x + 8}{2x - 1} \] ### Step 5: Determine the domain for each function The domain of \( f(x) \) and \( g(x) \) is determined by the denominator \( x^2 - 81 \neq 0 \), which gives: \[ x^2 - 81 = 0 \implies x = \pm 9 \] Thus, the domain for \( f \) and \( g \) is: \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] #### Domain of \( f + g \) The domain of \( f + g \) is the same as \( f \) and \( g \): \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] #### Domain of \( f - g \) The domain of \( f - g \) is also the same: \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] #### Domain of \( fg \) The domain of \( fg \) is the same: \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] #### Domain of \( \frac{f}{g} \) The domain of \( \frac{f}{g} \) is determined by both \( g \neq 0 \) and \( x^2 - 81 \neq 0 \): \[ 2x - 1 \neq 0 \implies x \neq \frac{1}{2} \] Thus, the domain is: \[ (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \] ### Final Answers A. The domain of \( f + g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). B. The domain of \( f + g \) is \( (-\infty, -9), (-9, 9), (9, \infty) \). C. The domain of \( f - g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). D. The simplified form of \( fg \) is \( \frac{6x^2 + 13x - 8}{(x^2 - 81)^2} \). E. The domain of \( \frac{f}{g} \) is \( (-\infty, -9) \cup (-9, \frac{1}{2}) \cup (\frac{1}{2}, 9) \cup (9, \infty) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find \( f + g \), \( f - g \), \( fg \), and \( \frac{l}{g} \), we start with the given functions: \[ f(x) = \frac{3x + 8}{x^2 - 81}, \quad g(x) = \frac{2x - 1}{x^2 - 81} \] The common denominator for both functions is \( x^2 - 81 \), which factors to \( (x - 9)(x + 9) \). The domain for \( f \) and \( g \) excludes the values that make the denominator zero, so we set the denominator to zero: \[ x^2 - 81 = 0 \implies x = 9 \quad \text{or} \quad x = -9 \] Thus, the domain of both \( f \) and \( g \) is \( \mathbb{R} \setminus \{-9, 9\} \), which in interval notation is: \[ (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \] Now let's compute the required functions: 1. **For \( f + g \)**: \[ f + g = \frac{(3x + 8) + (2x - 1)}{x^2 - 81} = \frac{5x + 7}{x^2 - 81} \] The domain remains the same as \( f \) and \( g \): A. The domain of \( f + g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). B. The domain of \( f + g \) is \( \{-9, 9\} \). C. The domain of \( f + g \) is \( \varnothing \). 2. **For \( f - g \)**: \[ f - g = \frac{(3x + 8) - (2x - 1)}{x^2 - 81} = \frac{x + 9}{x^2 - 81} \] To check for domain restrictions, we again find the values that make the denominator zero, which are still \( -9 \) and \( 9 \): A. The domain of \( f - g \) is \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). B. The domain of \( f - g \) is \( \{-9, 9\} \). C. The domain of \( f - g \) is \( \varnothing \). 3. **For \( fg \)**: \[ fg = f \cdot g = \frac{(3x + 8)(2x - 1)}{(x^2 - 81)^2} \] Here, we can multiply the numerators and keep the previous denominator. Finally, for \( \frac{l}{g} \), we're not provided with \( l \) in this context. In conclusion, the functions and their domains are as follows: - \( f + g \) and \( f - g \) maintain the same domain of \( (-\infty, -9) \cup (-9, 9) \cup (9, \infty) \). - The product \( fg \) also retains the same domain. - \( \frac{l}{g} \) requires further context about \( l \) to proceed.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad