Pregunta
Identify the values of \( a, b \), and \( c \) that cou \[ x^{2}=6(x-3) \] Part 1 of 3 Part 2 of 3 Part 3 of 3
Ask by Savage Wang. in the United States
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( a = 1 \), \( b = -6 \), and \( c = 18 \).
Solución
To identify the values of \( a \), \( b \), and \( c \) in the equation \( x^{2} = 6(x - 3) \), we will first rearrange the equation into standard quadratic form \( ax^2 + bx + c = 0 \).
### Step 1: Rearranging the Equation
Starting with the given equation:
\[
x^{2} = 6(x - 3)
\]
We can expand the right side:
\[
x^{2} = 6x - 18
\]
Next, we will move all terms to one side of the equation:
\[
x^{2} - 6x + 18 = 0
\]
### Step 2: Identifying \( a \), \( b \), and \( c \)
Now, we can identify the coefficients \( a \), \( b \), and \( c \) from the standard form \( ax^2 + bx + c = 0 \):
- \( a = 1 \) (coefficient of \( x^2 \))
- \( b = -6 \) (coefficient of \( x \))
- \( c = 18 \) (constant term)
### Final Values
Thus, the values are:
- \( a = 1 \)
- \( b = -6 \)
- \( c = 18 \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
First, let's rewrite the equation \( x^{2} = 6(x - 3) \) so that it is in standard form. Expanding the right side gives us: \[ x^{2} = 6x - 18. \] Now, we can bring all terms to one side to set the equation to zero: \[ x^{2} - 6x + 18 = 0. \] In this format, we can identify the values of \( a \), \( b \), and \( c \): - \( a = 1 \) - \( b = -6 \) - \( c = 18 \) So the identified values are: \( a = 1 \), \( b = -6 \), \( c = 18 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium