Pregunta
upstudy study bank question image url

5. Explain how to find the value for each limin a) \( \lim _{x \rightarrow-\infty}-\frac{2 x^{4}+8 x^{5}+7}{3 x^{5}+3 x^{3}-1} \)

Ask by Knight Peterson. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The limit is –8/3.

Solución

To evaluate   limₓ→₋∞ -[(2x⁴ + 8x⁵ + 7) / (3x⁵ + 3x³ − 1)], follow these steps: 1. Identify the highest power of x in the numerator and in the denominator.  – In the numerator, the highest power is x⁵ (from 8x⁵).  – In the denominator, the highest power is also x⁵ (from 3x⁵). 2. Divide every term in the numerator and the denominator by x⁵:   Numerator: (2x⁴)/x⁵ + (8x⁵)/x⁵ + 7/x⁵ = (2/x) + 8 + (7/x⁵)   Denominator: (3x⁵)/x⁵ + (3x³)/x⁵ − 1/x⁵ = 3 + (3/x²) − (1/x⁵) 3. Write the limit in terms of these new expressions while keeping the overall negative sign from the original problem:   limₓ→₋∞ -[( (2/x) + 8 + (7/x⁵) ) / ( 3 + (3/x²) − (1/x⁵) )] 4. As x→–∞, notice that 2/x, 7/x⁵, 3/x², and 1/x⁵ all approach 0. This simplifies the expression to:   -[(0 + 8 + 0) / (3 + 0 − 0)] = -[8/3] 5. Therefore, the limit is:   -8/3. So, the final answer is –8/3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the limit as \( x \) approaches negative infinity for the given expression, focus on the leading terms of both the numerator and denominator, since they dominate the behavior of the function. Here, the highest degree term in the numerator is \( 8x^5 \) and in the denominator, it's \( 3x^5 \). As \( x \to -\infty \), the limit simplifies to \( \lim_{x \to -\infty} -\frac{8x^5}{3x^5} \), which simplifies further to \( \lim_{x \to -\infty} -\frac{8}{3} \), resulting in \( -\frac{8}{3} \). Remember to always check for opportunities to simplify before diving deep into calculations. In this case, recognizing that the highest powers in both numerator and denominator influence the limit allows us to arrive at the answer quickly. Additionally, keeping track of signs is essential; something as simple as forgetting that \( x \) is negative could lead to confusion in determining the final answer.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad