Question 3 Consider \( f(x)=-3 x+6 \). Drag points that can represent the possible inputs and outputs of each function into the correct bin. \( f(x) \) \( f^{-1}(x) \) \( (-9,5) \) \( (-1,9) \) \( (0,2) \) \( (0,6) \) \( (-2,0) \) \( (3,-3) \) \( (3,1) \) \( (4,-6) \) (6, 0) (8,-1)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the points that represent possible inputs and outputs for the function \( f(x)=-3x+6 \) and its inverse \( f^{-1}(x) \), we first need to evaluate the function and its inverse. For \( f(x) = -3x + 6 \): 1. \( f(-9) = -3(-9) + 6 = 27 + 6 = 33 \) → not in the list 2. \( f(-1) = -3(-1) + 6 = 3 + 6 = 9 \) → \( (-1,9) \) 3. \( f(0) = -3(0) + 6 = 6 \) → \( (0,6) \) 4. \( f(-2) = -3(-2) + 6 = 6 + 6 = 12 \) → not in the list 5. \( f(3) = -3(3) + 6 = -9 + 6 = -3 \) → \( (3,-3) \) 6. \( f(4) = -3(4) + 6 = -12 + 6 = -6 \) → \( (4,-6) \) 7. \( f(6) = -3(6) + 6 = -18 + 6 = -12 \) → not in the list 8. \( f(8) = -3(8) + 6 = -24 + 6 = -18 \) → not in the list Now, the outputs for \( f(x) \) that match the points provided are \( (-1, 9) \), \( (0, 6) \), and \( (3, -3) \), \( (4, -6) \). Now, for the inverse. The inverse function can be derived by swapping \( x \) and \( y \) in \( y = -3x + 6 \): 1. \( x = -3y + 6 \) → rearranging gives \( y = 2 - \frac{x}{3} \) or \( f^{-1}(x) = 2 - \frac{x}{3} \). Now, we will check some points for the inverse: 1. \( f^{-1}(5) = 2 - \frac{5}{3} = 2 - 1.67 = 0.33 \) → not in the list 2. \( f^{-1}(9) = 2 - \frac{9}{3} = 2 - 3 = -1 \) → not in the list 3. \( f^{-1}(6) = 2 - \frac{6}{3} = 2 - 2 = 0 \) → not in the list 4. \( f^{-1}(0) = 2 - 0 = 2 \) → not in the list 5. \( f^{-1}(-3) = 2 - \frac{-3}{3} = 2 + 1 = 3 \) → not in the list 6. \( f^{-1}(-6) = 2 - \frac{-6}{3} = 2 + 2 = 4 \) → not in the list 7. \( f^{-1}(0) = 2 \), so \( (0, 2) \) → first check gives \( (0, 2) \) So the outputs of \( f^{-1}(x) \) don't match the points provided directly. Summarizing the pairs: For \( f(x) \): - \( (-1, 9) \) - \( (0, 6) \) - \( (3, -3) \) - \( (4, -6) \) For \( f^{-1}(x) \) that we evaluated: - None from our points directly match the actual checks provided. So the final choices would involve transferring the points: **f(x)**: \( (-1, 9) \), \( (0, 6) \), \( (3, -3) \), \( (4, -6) \) **f^{-1}(x)**: \( (0, 2) \) but doesn't directly appear on previous checks, thus we can say either not applicable or cross-reference with common checks. Overall, the possible pairs from checks remain key as in direct outputs based on generated pairs!
