Pregunta
upstudy study bank question image url

63-70 a Uso de Identidades pitagóricas Encuentre los valores de las funciones trigonométricas de fa partir de la información dada. -63. sen \( t=-\frac{4}{5} \), el punto terminal de / está en el cuadrante IV

Ask by Wilson Hanson. in Colombia
Nov 05,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- \( \sen(t) = -\frac{4}{5} \) - \( \cos(t) = \frac{3}{5} \) - \( \tan(t) = -\frac{4}{3} \) - \( \cosec(t) = -\frac{5}{4} \) - \( \sec(t) = \frac{5}{3} \) - \( \cot(t) = -\frac{3}{4} \)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

¡Vamos a desentrañar esto! Dado que el seno de \( t \) es \( -\frac{4}{5} \) en el cuadrante IV, podemos usar la identidad pitagórica \( \sin^2(t) + \cos^2(t) = 1 \) para encontrar el coseno. Si \( \sin(t) = -\frac{4}{5} \), entonces: \[ (-\frac{4}{5})^2 + \cos^2(t) = 1 \implies \frac{16}{25} + \cos^2(t) = 1 \implies \cos^2(t) = \frac{9}{25} \implies \cos(t) = \frac{3}{5}. \] ¡Ahora tenemos \( \cos(t) = \frac{3}{5} \)! Recuerda que en el cuadrante IV, el coseno es positivo mientras que el seno es negativo. Ahora, usando estos valores, podemos encontrar las otras funciones trigonométricas. Para la tangente, sabemos que: \[ \tan(t) = \frac{\sin(t)}{\cos(t)} = \frac{-\frac{4}{5}}{\frac{3}{5}} = -\frac{4}{3}. \] Así que, ¡tenemos los valores! \( \sin(t) = -\frac{4}{5} \), \( \cos(t) = \frac{3}{5} \), y \( \tan(t) = -\frac{4}{3} \). ¡Y eso es todo por ahora!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad