Pregunta
upstudy study bank question image url

Question 3 (1 point) \begin{tabular}{|l|l|l}\hline Listen \end{tabular} An endangered species has a population of 5000 . Scientists estimate that the stock is decreasing at \( 3 \% \) per year. At this rate, approximately how many years will it be before \( 60 \% \) of the species remains?

Ask by Simpson Stewart. in the United States
Nov 05,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 16.77 years for the population to decrease to 60%.

Solución

To find out how many years it will take for the population of the endangered species to decrease to 60% of its current population, we can use the formula for exponential decay: \[ P(t) = P_0 \times (1 - r)^t \] where: - \( P(t) \) is the population at time \( t \), - \( P_0 \) is the initial population, - \( r \) is the rate of decrease (expressed as a decimal), - \( t \) is the time in years. Given: - Initial population \( P_0 = 5000 \), - Rate of decrease \( r = 3\% = 0.03 \), - Final population \( P(t) = 60\% = 0.60 \times 5000 = 3000 \). We need to find the value of \( t \) when \( P(t) = 3000 \). Substitute the values into the formula and solve for \( t \): \[ 3000 = 5000 \times (1 - 0.03)^t \] \[ 0.6 = (0.97)^t \] To find \( t \), we need to take the logarithm of both sides: \[ \log(0.6) = \log((0.97)^t) \] \[ \log(0.6) = t \times \log(0.97) \] \[ t = \frac{\log(0.6)}{\log(0.97)} \] Now, we can calculate the value of \( t \) using the given values. Calculate the value by following steps: - step0: Calculate: \(\frac{\log_{10}{\left(0.6\right)}}{\log_{10}{\left(0.97\right)}}\) - step1: Convert the expressions: \(\frac{\log_{10}{\left(\frac{3}{5}\right)}}{\log_{10}{\left(0.97\right)}}\) - step2: Convert the expressions: \(\frac{\log_{10}{\left(\frac{3}{5}\right)}}{\log_{10}{\left(\frac{97}{100}\right)}}\) - step3: Use the logarithm base change rule: \(\log_{\frac{97}{100}}{\left(\frac{3}{5}\right)}\) - step4: Rewrite the expression: \(\log_{\frac{97}{100}}{\left(3\right)}-\log_{\frac{97}{100}}{\left(5\right)}\) It will take approximately 16.77 years for the population of the endangered species to decrease to 60% of its current population.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how long it will take for the population to decrease to 60%, we first need to determine what 60% of the initial population is. If the current population is 5000, then 60% of that is 3000. Now, we can model the population decline with the formula: \[ P = P_0 (1 - r)^t \] Where: - \( P \) is the population after time \( t \) (3000), - \( P_0 \) is the initial population (5000), - \( r \) is the rate of decline (0.03), and - \( t \) is the number of years. Setting up the equation: \[ 3000 = 5000 (1 - 0.03)^t \] This simplifies to: \[ 0.6 = (0.97)^t \] Taking the natural logarithm of both sides gives us: \[ \ln(0.6) = t \cdot \ln(0.97) \] Thus, we can solve for \( t \): \[ t = \frac{\ln(0.6)}{\ln(0.97)} \] Calculating these values: \[ t \approx \frac{-0.5108}{-0.0305} \approx 16.74 \] So, it will take approximately 17 years for the population to decline to 3000, which is 60% of the initial population.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad