Pregunta
upstudy study bank question image url

4. An initial amount of \( \$ 2300 \) is deposited in an account. In 5 years, the investment grows to \( \$ 4237.61 \). a. Find a formula for the value of the investment as a function of time, assuming exponential growth. Report any calculated values correct to two decimal places. Your formula should begin with " \( y= \) ". b. What annual interest rate does the account pay?

Ask by Grant Hardy. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The value of the investment after time \( t \) is \( y = 2300 e^{0.1241t} \). b. The annual interest rate is approximately \( 12.41\% \).

Solución

To solve this problem, we will follow these steps: ### Part a: Find the formula for the value of the investment 1. **Identify the known values:** - Initial amount (principal) \( P = 2300 \) - Amount after 5 years \( A = 4237.61 \) - Time \( t = 5 \) years 2. **Use the formula for exponential growth:** The formula for exponential growth is given by: \[ A = P e^{rt} \] where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (as a decimal), - \( t \) is the time in years, - \( e \) is the base of the natural logarithm. 3. **Substituting the known values into the formula:** \[ 4237.61 = 2300 e^{5r} \] 4. **Solve for \( e^{5r} \):** \[ e^{5r} = \frac{4237.61}{2300} \] 5. **Calculate \( \frac{4237.61}{2300} \):** Let's calculate this value. Now, I will perform the calculation for \( \frac{4237.61}{2300} \). Calculate the value by following steps: - step0: Calculate: \(\frac{4237.61}{2300}\) - step1: Convert the expressions: \(\frac{\frac{423761}{100}}{2300}\) - step2: Multiply by the reciprocal: \(\frac{423761}{100}\times \frac{1}{2300}\) - step3: Multiply the fractions: \(\frac{423761}{100\times 2300}\) - step4: Multiply: \(\frac{423761}{230000}\) The calculation gives us: \[ e^{5r} \approx 1.842439 \] 6. **Take the natural logarithm of both sides:** \[ 5r = \ln(1.842439) \] 7. **Calculate \( \ln(1.842439) \):** Now, I will calculate the natural logarithm of \( 1.842439 \). Calculate the value by following steps: - step0: Calculate: \(\ln{\left(1.842439\right)}\) - step1: Convert the expressions: \(\ln{\left(\frac{1842439}{1000000}\right)}\) - step2: Rewrite the expression: \(\ln{\left(1842439\right)}-6\ln{\left(10\right)}\) The calculation gives us: \[ 5r = \ln(1.842439) \approx 0.620576 \] 8. **Solve for \( r \):** \[ r = \frac{0.620576}{5} \approx 0.1241152 \] 9. **Convert \( r \) to a percentage:** \[ r \approx 0.1241152 \times 100 \approx 12.41\% \] 10. **Write the formula for the value of the investment:** Now we can express the value of the investment as a function of time \( t \): \[ y = 2300 e^{0.1241152t} \] ### Part b: What annual interest rate does the account pay? The annual interest rate is approximately \( 12.41\% \). ### Final Answers: a. The formula for the value of the investment is: \[ y = 2300 e^{0.1241152t} \] b. The annual interest rate is approximately \( 12.41\% \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find a formula for the value of the investment, we can use the exponential growth formula: \[ y = P(1 + r)^t \] where: - \( P \) is the initial principal balance (\$2300), - \( r \) is the interest rate, - \( t \) is the time in years, - \( y \) is the amount of money accumulated after n years, including interest. Given that \( y = 4237.61 \) after 5 years, we can set up the equation: \[ 4237.61 = 2300(1 + r)^5 \] Dividing both sides by 2300 gives: \[ \frac{4237.61}{2300} = (1 + r)^5 \] \[ 1.84 \approx (1 + r)^5 \] Taking the fifth root on both sides: \[ 1 + r \approx 1.84^{1/5} \] \[ 1 + r \approx 1.1308 \] Now subtracting 1: \[ r \approx 0.1308 \] So, the interest rate is approximately \( r = 0.1308 \) or \( 13.08\% \). Thus, the formula for the value of the investment over time is: \[ y = 2300(1.1308)^t \] In summary: a. \( y = 2300(1.1308)^t \) b. The annual interest rate is approximately \( 13.08\% \). --- Did you know that compound interest can work like magic for your savings? By leveraging the power of exponential growth, you could turn even a small initial investment into a big haul over time! It's often said that "the best time to plant a tree was twenty years ago; the second-best time is now." So, the sooner you invest, the better! Also, remember that inflation can erode your savings if your interest rate is lower than the inflation rate. It's essential to choose investments wisely! Monitoring your returns and adjusting your strategies is key to making the most of your money. Always keep learning and adjusting, as financial landscapes can change!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad