Pregunta
upstudy study bank question image url

d) \( f(x)=-\frac{1}{4}(x+1)^{2}+5 \)

Ask by Erickson Rodriquez. in Canada
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = -\frac{1}{4}(x+1)^{2} + 5 \) is a downward-opening parabola with its vertex at \( (-1, 5) \). It has an axis of symmetry at \( x = -1 \), a y-intercept at \( \left(0, \frac{19}{4}\right) \), and x-intercepts at \( x = -1 + 2\sqrt{5} \) and \( x = -1 - 2\sqrt{5} \).

Solución

To analyze the function \( f(x) = -\frac{1}{4}(x+1)^{2} + 5 \), we can identify several features of the function, such as its vertex, axis of symmetry, and whether it opens upwards or downwards. 1. **Identify the vertex**: The function is in vertex form \( f(x) = a(x-h)^{2} + k \), where \( (h, k) \) is the vertex. Here, \( a = -\frac{1}{4} \), \( h = -1 \), and \( k = 5 \). Thus, the vertex is at the point \( (-1, 5) \). 2. **Determine the direction of opening**: Since \( a < 0 \) (specifically, \( a = -\frac{1}{4} \)), the parabola opens downwards. 3. **Find the axis of symmetry**: The axis of symmetry is the vertical line that passes through the vertex, given by \( x = h \). Therefore, the axis of symmetry is \( x = -1 \). 4. **Calculate the y-intercept**: To find the y-intercept, we set \( x = 0 \): \[ f(0) = -\frac{1}{4}(0+1)^{2} + 5 = -\frac{1}{4}(1) + 5 = -\frac{1}{4} + 5 = \frac{19}{4} \] Thus, the y-intercept is \( \left(0, \frac{19}{4}\right) \). 5. **Find the x-intercepts**: To find the x-intercepts, we set \( f(x) = 0 \): \[ 0 = -\frac{1}{4}(x+1)^{2} + 5 \] Rearranging gives: \[ \frac{1}{4}(x+1)^{2} = 5 \] Multiplying both sides by 4: \[ (x+1)^{2} = 20 \] Taking the square root of both sides: \[ x + 1 = \pm \sqrt{20} \] Thus: \[ x = -1 \pm 2\sqrt{5} \] Therefore, the x-intercepts are \( x = -1 + 2\sqrt{5} \) and \( x = -1 - 2\sqrt{5} \). Now, let's summarize the findings: - Vertex: \( (-1, 5) \) - Opens: Downwards - Axis of symmetry: \( x = -1 \) - Y-intercept: \( \left(0, \frac{19}{4}\right) \) - X-intercepts: \( x = -1 + 2\sqrt{5} \) and \( x = -1 - 2\sqrt{5} \) If you need further analysis or specific calculations, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

This function represents a parabola that opens downward, with its vertex at the point \((-1, 5)\). The negative coefficient of \(-\frac{1}{4}\) indicates that the parabola will have a "smaller" width compared to a standard parabola \(y = -x^2\), giving it a more pronounced peak. This feature means it achieves its maximum value of 5 at the vertex, and as \(x\) moves away from -1 in either direction, the function's value drops. One common mistake when working with parabolas is overlooking the vertex and its role in maximizing or minimizing the function. Always remember that the vertex represents the highest or lowest point in your parabolic graph, depending on whether it opens up or down. Additionally, confirming the direction (upward or downward) through the coefficient in front of the squared term is vital for accurately sketching its graph.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad