QUESTION 2 2. \( \begin{array}{ll}\text { Given: } h(x)=4\left(2^{-x}\right)+1 \\ .2 .1 & \text { Determine the coordinates of the } y \text {-intercept of } h \\ .2 .2 & \text { Explain why } h \text { does not have an } x \text {-intercept. } \\ .2 .3 & \begin{array}{l}\text { Draw a sketch graph of } h \text {, clearly showing all asymptotes, intercepts } \\ \text { with the axes and at least one other point on } h\end{array} \\ .2 .4 & \text { Describe the transformation from } h \text { to } g \text { if } g(x)=4\left(2^{-s}+2\right) .\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the \( y \)-intercept of \( h(x) \), substitute \( x = 0 \). This gives us \( h(0) = 4(2^{0}) + 1 = 4(1) + 1 = 5 \). So, the coordinates of the \( y \)-intercept are (0, 5). Now, regarding the \( x \)-intercept, we look for where \( h(x) = 0 \). Since \( 4(2^{-x}) + 1 \) is always positive (as it approaches but never reaches 1), \( h(x) \) never touches or crosses the \( x \)-axis. Thus, there is no \( x \)-intercept.
