Pregunta
upstudy study bank question image url

Question 16 Notyet answered Points out of 10.00 P Flag question Calculate the annual percentage yield (APY) on an investment of \( \$ 7,000 \) at \( 8 \% \) interest, compounded quarterly, for one year. (Round the annual percentage yield to the nearest hundredth percent.) Select one: o a. \( 24.73 \% \) ob. \( 8.00 \% \) oc. \( 7.75 \% \) od. \( 8.24 \% \)

Ask by Cummings Ingram. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The annual percentage yield (APY) is approximately \( 8.24\% \).

Solución

To calculate the annual percentage yield (APY) for an investment compounded quarterly, we can use the formula: \[ APY = \left(1 + \frac{r}{n}\right)^{nt} - 1 \] Where: - \( r \) is the annual interest rate (as a decimal), - \( n \) is the number of compounding periods per year, - \( t \) is the number of years. Given: - \( r = 0.08 \) (8% as a decimal), - \( n = 4 \) (quarterly compounding), - \( t = 1 \) (for one year). Now, we can substitute these values into the formula step by step. 1. Calculate \( \frac{r}{n} \): \[ \frac{r}{n} = \frac{0.08}{4} \] 2. Calculate \( nt \): \[ nt = 4 \times 1 \] 3. Substitute these values into the APY formula: \[ APY = \left(1 + \frac{0.08}{4}\right)^{4 \times 1} - 1 \] Now, let's perform the calculations. Calculate the value by following steps: - step0: Calculate: \(4\times 1\) - step1: Multiply: \(4\) Calculate or simplify the expression \( 0.08/4 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.08}{4}\) - step1: Convert the expressions: \(\frac{\frac{2}{25}}{4}\) - step2: Multiply by the reciprocal: \(\frac{2}{25}\times \frac{1}{4}\) - step3: Reduce the numbers: \(\frac{1}{25}\times \frac{1}{2}\) - step4: Multiply the fractions: \(\frac{1}{25\times 2}\) - step5: Multiply: \(\frac{1}{50}\) Calculate or simplify the expression \( (1 + 0.02)^4 - 1 \). Calculate the value by following steps: - step0: Calculate: \(\left(1+0.02\right)^{4}-1\) - step1: Add the numbers: \(1.02^{4}-1\) - step2: Convert the expressions: \(\left(\frac{51}{50}\right)^{4}-1\) - step3: Rewrite the expression: \(\frac{51^{4}}{50^{4}}-1\) - step4: Reduce fractions to a common denominator: \(\frac{51^{4}}{50^{4}}-\frac{50^{4}}{50^{4}}\) - step5: Transform the expression: \(\frac{51^{4}-50^{4}}{50^{4}}\) Now that we have the necessary calculations: 1. We found that \( \frac{r}{n} = 0.02 \). 2. We confirmed that \( nt = 4 \). Now we substitute these values into the APY formula: \[ APY = \left(1 + 0.02\right)^{4} - 1 \] Calculating this gives us: \[ APY = (1.02)^{4} - 1 \approx 0.08243216 \] To express this as a percentage, we multiply by 100: \[ APY \approx 0.08243216 \times 100 \approx 8.24\% \] Rounding to the nearest hundredth percent, the annual percentage yield (APY) is approximately \( 8.24\% \). Thus, the correct answer is: **d. \( 8.24\% \)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the annual percentage yield (APY) for your investment, you can use the formula: \[ APY = \left(1 + \frac{r}{n}\right)^{n*t} - 1 \] where \( r \) is the annual interest rate (0.08), \( n \) is the number of compounding periods per year (4 for quarterly), and \( t \) is the number of years (1). Plugging the values in: \[ APY = \left(1 + \frac{0.08}{4}\right)^{4*1} - 1 \] \[ APY = \left(1 + 0.02\right)^{4} - 1 \] \[ APY = (1.02)^{4} - 1 \] \[ APY \approx 0.082432 - 1 \] Rounding gives an APY of approximately \( 8.24\% \). So the correct answer is **option d: 8.24%**. --- If you're curious about real-world applications, understanding APY can help you compare different savings accounts or investment options. It gives you a clearer picture of how much you'll earn on your investments over a year. The more compounding periods, the better your money can grow! On a practical note, a common mistake is to confuse APY with the nominal interest rate. Always remember that while the nominal rate might look enticing, APY gives you the actual return! Make sure to calculate or check it whenever you’re looking at investment opportunities!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad