Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { \int 11 \tan ^ { 5 } x \sec ^ { 4 } x d x } \\ { \int 11 \tan ^ { 5 } x \sec ^ { 4 } x d x = \square } \end{array} \right. \)

Ask by Hall Collins. in the United States
Nov 13,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral \( \int 11 \tan ^ { 5 } x \sec ^ { 4 } x d x \) is not straightforward to calculate.

Solución

The integral \( \int 11 \tan ^ { 5 } x \sec ^ { 4 } x d x \) cannot be directly calculated. Let's simplify the expression first before calculating the integral. Simplify the expression by following steps: - step0: Solution: \(11\tan^{5}\left(x\right)\sec^{4}\left(x\right)\) - step1: Calculate: \(11\times \frac{\sin^{5}\left(x\right)}{\cos^{5}\left(x\right)}\times \sec^{4}\left(x\right)\) - step2: Calculate: \(11\times \frac{\sin^{5}\left(x\right)}{\cos^{5}\left(x\right)}\times \frac{1}{\cos^{4}\left(x\right)}\) - step3: Calculate: \(\frac{11\sin^{5}\left(x\right)}{\cos^{9}\left(x\right)}\) - step4: Rewrite the expression: \(11\sin^{5}\left(x\right)\cos^{-9}\left(x\right)\) - step5: Simplify: \(11\sin^{5}\left(x\right)\sec^{9}\left(x\right)\) The integral of \( 11\sin^{5}(x)\sec^{9}(x) \) cannot be directly calculated using integration by parts. It seems that the integral of this expression is not straightforward to calculate. If you have any specific method or approach in mind, please let me know so that I can assist you further.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the integral \( \int 11 \tan^5 x \sec^4 x \, dx \), we can use substitution. Notice that if we let \( u = \tan x \), then \( du = \sec^2 x \, dx \). We have \( \sec^4 x = (1 + \tan^2 x) \sec^2 x = (1 + u^2) \, du \). Then, rewriting the integral, we have \( \int 11 u^5 (1 + u^2) \, du \). By expanding this and integrating term by term, we can simplify the integral. Once you calculate it, don’t forget to substitute back in terms of \( x \) to finalize your answer! Integrating leads to: \[ \int 11 (u^5 + u^7) \, du = \frac{11}{6} u^6 + \frac{11}{8} u^8 + C \] Substituting back to \( x \): \[ = \frac{11}{6} \tan^6 x + \frac{11}{8} \tan^8 x + C \] Now you have beautifully solved that integral! What about those common mistakes, right? When tackling integrals involving trigonometric functions, one frequent slip is forgetting to substitute completely. Make sure every part is replaced properly! Another mistake is failing to apply the power rule appropriately on polynomial terms; remember, each exponent gets increased by one, and you divide by the new exponent. Staying mindful of these details will definitely help avoid integration mishaps!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad