14. Prove the following (a) \( \cos (A+B+C)=\cos A \cos B \cdot \cos C(1-\tan A \cdot \tan B-\tan B \cdot \tan C-\tan C \cdot \tan A) \) (b) \( \tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \cdot \tan B \cdot \tan C}{1-\tan A \cdot \tan B-\tan B \cdot \tan C-\tan C \cdot \tan A} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To prove the given identities, we start with the trigonometric addition formulas and apply algebraic manipulations. (a) For \( \cos(A+B+C) \), we can utilize the angle addition formulas successively. Starting with \( \cos(A+B) = \cos A \cos B - \sin A \sin B \), we can express \( \cos(A+B+C) \) as \( \cos(A+B) \cos C - \sin(A+B) \sin C \). Then substituting the expressions for \( \cos(A+B) \) and \( \sin(A+B) \) leads us to derive the required equation by carefully handling \( \tan A \), \( \tan B \), and \( \tan C \). (b) The proof for \( \tan(A+B+C) \) can be initiated using the formula for tangent of a sum: \( \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \). Applying the formula one more time with \( C \) in the equation allows us to derive the desired expression. After organizing the terms and simplifying, we arrive at the desired formula, confirming the identity. By methodically applying the angle addition formulas and simplifying using algebraic properties of tangents and cosines, both identities can be established reliably.
