Pregunta
upstudy study bank question image url

DO NOT WRITE IN THIS AREA DO NOT WRITE I 1. (a) (i) Calculate the value of \( \sqrt{(7.1)^{2}+(2.9)^{2}} \), giving your answer correct to a) \( \quad 2 \) significant figures (1 mark) b) \( \quad 2 \) decimal places. (1 mark) (ii) Write the following quantities in ascending order. \[ \frac{12}{25}, \quad 0.46, \quad 47 \% \] WRITE IN THIS AREA \( \qquad \) \( \qquad \) \( \qquad \) \[ <. \] \( \qquad \) (1 mark)

Ask by George Valdez. in Guyana
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. (a) (i) - \( \sqrt{(7.1)^{2}+(2.9)^{2}} = \sqrt{50.41 + 8.41} = \sqrt{58.82} \) - a) \( \approx 7.7 \) (2 significant figures) - b) \( \approx 7.67 \) (2 decimal places) (ii) - \( \frac{12}{25} = 0.48 \) - \( 0.46 \) - \( 47\% = 0.47 \) In ascending order: \[ 0.46 < 47\% < \frac{12}{25} \]

Solución

Calculate the value by following steps: - step0: Calculate: \(\sqrt{7.1^{2}+2.9^{2}}\) - step1: Convert the expressions: \(\sqrt{\left(\frac{71}{10}\right)^{2}+2.9^{2}}\) - step2: Convert the expressions: \(\sqrt{\left(\frac{71}{10}\right)^{2}+\left(\frac{29}{10}\right)^{2}}\) - step3: Add the numbers: \(\sqrt{\frac{2941}{50}}\) - step4: Use the properties of radicals: \(\frac{\sqrt{2941}}{\sqrt{50}}\) - step5: Simplify the expression: \(\frac{\sqrt{2941}}{5\sqrt{2}}\) - step6: Multiply by the Conjugate: \(\frac{\sqrt{2941}\times \sqrt{2}}{5\sqrt{2}\times \sqrt{2}}\) - step7: Multiply the numbers: \(\frac{\sqrt{5882}}{5\sqrt{2}\times \sqrt{2}}\) - step8: Multiply the numbers: \(\frac{\sqrt{5882}}{10}\) Calculate or simplify the expression \( \sqrt((7.1)^2 + (2.9)^2) \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{7.1^{2}+2.9^{2}}\) - step1: Convert the expressions: \(\sqrt{\left(\frac{71}{10}\right)^{2}+2.9^{2}}\) - step2: Convert the expressions: \(\sqrt{\left(\frac{71}{10}\right)^{2}+\left(\frac{29}{10}\right)^{2}}\) - step3: Add the numbers: \(\sqrt{\frac{2941}{50}}\) - step4: Use the properties of radicals: \(\frac{\sqrt{2941}}{\sqrt{50}}\) - step5: Simplify the expression: \(\frac{\sqrt{2941}}{5\sqrt{2}}\) - step6: Multiply by the Conjugate: \(\frac{\sqrt{2941}\times \sqrt{2}}{5\sqrt{2}\times \sqrt{2}}\) - step7: Multiply the numbers: \(\frac{\sqrt{5882}}{5\sqrt{2}\times \sqrt{2}}\) - step8: Multiply the numbers: \(\frac{\sqrt{5882}}{10}\) Calculate or simplify the expression \( 12/25 \). Calculate the value by following steps: - step0: Calculate: \(\frac{12}{25}\) Calculate or simplify the expression \( 47/100 \). Calculate the value by following steps: - step0: Calculate: \(\frac{47}{100}\) 1. (a) (i) To calculate \( \sqrt{(7.1)^{2}+(2.9)^{2}} \): First, we compute the expression: \[ \sqrt{(7.1)^{2}+(2.9)^{2}} = \sqrt{50.41 + 8.41} = \sqrt{58.82} \] Now, we find the approximate value: - a) Correct to 2 significant figures: \( \approx 7.7 \) - b) Correct to 2 decimal places: \( \approx 7.67 \) (ii) To write the quantities in ascending order: - \( \frac{12}{25} = 0.48 \) - \( 0.46 \) - \( 47\% = 0.47 \) Now, we can arrange them: \[ 0.46 < 0.47 < 0.48 \] Thus, the final answer is: \[ 0.46 < 47\% < \frac{12}{25} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

First additional information (≈50-100 words): Did you know that the concept of the square root has been around for thousands of years? The ancient Babylonians had their own methods for approximating square roots as far back as 2000 BC! They developed an iterative process essentially similar to what we now call the "Babylonian method" or "Heron's method," which was quite advanced for its time. Today, square roots are not just a numerical curiosity; they are used across scientific fields, from calculating distances to understanding patterns in nature! Second additional information (≈50-100 words): When dealing with comparisons like your ascending order question, always convert percentages to decimal form for clarity. Remember that \( 47\% \) is equivalent to \( 0.47 \) when you divide by 100. You can also use visual aids, like number lines, to help you see where numbers fall relative to each other. Using fractions can also confuse things if not converted, which is why converting \( \frac{12}{25} \) to \( 0.48 \) can help you see it fits nicely between the others. Loving numbers can really make math more fun!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad