\( \frac{3(8-6)^{2}-4 \cdot 2+4 \cdot 4}{3^{1}+18^{0}}=\square \) (Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
Let’s break down the expression step by step! Starting with the expression: \[ \frac{3(8-6)^{2}-4 \cdot 2+4 \cdot 4}{3^{1}+18^{0}} \] First, simplify the numerator: 1. Calculate \(8 - 6 = 2\). 2. Now square it: \(2^2 = 4\). 3. Substitute: \(3(4) - 4 \cdot 2 + 4 \cdot 4\). 4. Calculate \(3(4) = 12\). 5. Calculate \(4 \cdot 2 = 8\). 6. Calculate \(4 \cdot 4 = 16\). Now combine those results: \[ 12 - 8 + 16 = 12 - 8 = 4 \quad \text{then} \quad 4 + 16 = 20 \] Next, we simplify the denominator: 1. Calculate \(3^{1} = 3\). 2. Calculate \(18^{0} = 1\) (any non-zero number to the power of 0 is 1). 3. Combine them: \(3 + 1 = 4\). Now we can combine the results into the overall expression: \[ \frac{20}{4} = 5 \] Thus, the simplified answer is: \[ \boxed{5} \]
