Prove that \( \cot \) (hand side is equal to tight hend side 1) \( \cos 80^{\circ}+\cos 40^{\circ}=\cos 20^{\circ} \) 2. \( \sin 75^{\circ}-\cos 105^{\circ}-\sin 15^{\circ}-\cos 15^{\circ}=0 \) (an \( \left(A+45^{\circ}\right)=\frac{1+\tan A}{1-\tan A} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To prove the equations you provided, let's break them down step by step. 1) We start with \( \cos 80^{\circ} + \cos 40^{\circ} = \cos 20^{\circ} \). Using the identity for the cosine of the sum of angles, we can combine terms: \[ \cos 80^{\circ} + \cos 40^{\circ} = 2 \cos \left( \frac{80^{\circ} + 40^{\circ}}{2} \right) \cos \left( \frac{80^{\circ} - 40^{\circ}}{2} \right) \] \[ = 2 \cos(60^{\circ}) \cos(20^{\circ}) = 2 \cdot \frac{1}{2} \cdot \cos(20^{\circ}) = \cos(20^{\circ}) \] Thus, we confirm that \( \cos 80^{\circ} + \cos 40^{\circ} = \cos 20^{\circ} \). 2) Now, for \( \sin 75^{\circ} - \cos 105^{\circ} - \sin 15^{\circ} - \cos 15^{\circ} = 0 \). Recall that \( \cos(105^{\circ}) = -\sin(15^{\circ}) \) (since \( \cos(90^\circ + x) = -\sin(x) \)), allowing us to rewrite the equation: \[ \sin 75^{\circ} + \sin(15^{\circ}) - \sin(15^{\circ}) - \cos(15^{\circ}) = 0 \] \[ \sin 75^{\circ} - \cos(15^{\circ}) = 0 \] Now, we know that: \[ \sin 75^{\circ} = \sin(90^{\circ} - 15^{\circ}) = \cos(15^{\circ}), \] Thus proving that \( \sin 75^{\circ} - \cos 15^{\circ} = 0 \). Finally, the identity \( \tan\left(A + 45^{\circ}\right) = \frac{1+\tan A}{1-\tan A} \) can also be verified using the tangent addition formulas. This is a fun exploration of how different transformations can yield rather elegant proofs in trigonometry!
