Pregunta
upstudy study bank question image url

\( -\frac{\pi}{2}<\theta \leq \frac{\pi}{2} \). Find the value of \( \theta \) in radians. \( \cot (\theta)=0 \) Write your answer in simplified, rationalized form. Do not round. \( \theta=\square \)

Ask by Haynes Thornton. in Kuwait
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\(\theta = \frac{\pi}{2}\)

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

The equation \( \cot(\theta) = 0 \) indicates that the cosine of \( \theta \) is zero while the sine is not, which occurs at \( \theta = \frac{\pi}{2} \). Therefore, within the given range \( -\frac{\pi}{2} < \theta \leq \frac{\pi}{2} \), the only solution is: \[ \theta = \frac{\pi}{2} \] The cotangent function, \( \cot(\theta) \), is defined as the ratio of the cosine to the sine: \( \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \). At \( \theta = \frac{\pi}{2} \), the cosine value is indeed zero while the sine value is one, confirming that \( \cot(\frac{\pi}{2}) = 0 \).

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad