Pregunta
upstudy study bank question image url

2. \( y>-2 \) \( y \leq x+9 \)

Ask by Lambert Burns. in the United States
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution includes all points \( (x, y) \) where \( y \) is greater than -2 and less than or equal to \( x + 9 \).

Solución

It seems that the system of inequalities provided cannot be solved using the standard methods for equations. However, I can help you analyze the inequalities step by step. ### Given Inequalities: 1. \( y > -2 \) 2. \( y \leq x + 9 \) ### Step 1: Analyze the first inequality The first inequality \( y > -2 \) indicates that the value of \( y \) must be greater than -2. This represents a horizontal line at \( y = -2 \) and includes all values above this line. ### Step 2: Analyze the second inequality The second inequality \( y \leq x + 9 \) indicates that the value of \( y \) must be less than or equal to the line represented by \( y = x + 9 \). This line has a slope of 1 and a y-intercept of 9. ### Step 3: Graphical Representation To visualize the solution, we can plot both inequalities on a coordinate plane: - The line \( y = -2 \) will be a dashed line (since \( y \) is not equal to -2). - The line \( y = x + 9 \) will be a solid line (since \( y \) can equal \( x + 9 \)). ### Step 4: Determine the feasible region The solution to the system of inequalities will be the region where: - Above the line \( y = -2 \) - Below or on the line \( y = x + 9 \) ### Conclusion The solution set consists of all points \( (x, y) \) that satisfy both inequalities. The feasible region is bounded by the two lines, where \( y \) is greater than -2 and less than or equal to \( x + 9 \). If you need further assistance or a specific calculation, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that inequalities, like \( y > -2 \) and \( y \leq x + 9 \), can be visualized graphically on a coordinate plane? The first inequality suggests a horizontal line at \( y = -2 \) but shaded above it, indicating all the values of \( y \) greater than -2. The second inequality defines a line with a slope of 1, shifted up by 9, where all points below or on the line are included! A common mistake when solving systems of inequalities is to forget to shade the correct region. Make sure when graphing that you clearly indicate which side of the line is valid for each inequality. And don’t forget: if the line is solid, that means the points on it are included; if it’s dashed, they’re not! Happy grappling with those lines!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad