Pregunta
upstudy study bank question image url

19 ABCD is a trapezium in which \( \overline{\mathrm{AD}} / / \overline{\mathrm{BC}}, \mathrm{AD}=27 \mathrm{~cm} \). and \( \mathrm{BC}=45 \mathrm{~cm} \). If the area of \( \triangle \mathrm{ABC}=225 \mathrm{~cm}^{2} \)., find the area of the trapezium.

Ask by Reyes Boyd. in Egypt
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area of the trapezium ABCD is 360 cm².

Solución

We are given a trapezium (in some countries called a trapezoid) ABCD in which the sides AD and BC are parallel. Their lengths are   AD = 27 cm  and  BC = 45 cm. Also, the area of triangle ABC is 225 cm². We wish to find the area of the trapezium. One way to approach the problem is to place the figure in the coordinate plane in a convenient way. Step 1. Choose a Coordinate System • Place the line containing BC horizontally. For convenience, let   B = (0, 0)  and  C = (45, 0) so that the length BC = 45 cm. • Since AD is parallel to BC, it is also horizontal. Let the line containing AD be y = k for some constant k. We will determine k using the given area of triangle ABC. Step 2. Locate Point A Using the Area of Triangle ABC Triangle ABC has vertices A, B, and C. Since B and C lie on the line y = 0, the altitude of the triangle from A down to line BC will just be the vertical distance |y_A|. The area of triangle ABC is given by:   Area = ½ × (base) × (height) Here, the base is BC = 45 cm. We are told that the area is 225 cm²:   ½ × 45 × |y_A| = 225 Solve for |y_A|:   45 × |y_A| = 450  ⟹  |y_A| = 10 Without loss of generality, take y_A = 10. (A can be placed above BC.) Now, A = (x_A, 10) where x_A is not yet fixed. (Its x‐coordinate does not affect the height.) Step 3. Locate Point D Since AD must lie on the same horizontal line as A (because AD ∥ BC) and its length is 27 cm, if we choose A = (x_A, 10), then we need   |x_D – x_A| = 27. For concreteness, let:   D = (x_A + 27, 10). Step 4. Compute the Area of the Trapezium The formula for the area of a trapezium with parallel sides (bases) of lengths b₁ and b₂ and height h is   Area = ½ × (b₁ + b₂) × h. Here, the two bases are AD and BC. Their lengths are:   AD = 27 cm  and  BC = 45 cm. The height is the vertical distance between the lines containing AD and BC, which is |10 – 0| = 10 cm. Thus, the area is:   Area = ½ × (27 + 45) × 10      = ½ × 72 × 10      = 36 × 10      = 360 cm². Step 5. Conclude Therefore, the area of the trapezium ABCD is 360 cm².

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the area of trapezium ABCD, we first use the fact that the area of triangle ABC is given as \( 225 \, \text{cm}^2 \). Since AD and BC are parallel, the height of triangle ABC (which we'll denote as \( h \)) can be calculated using the formula for the area of a triangle: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] For triangle ABC, considering BC as the base: \[ 225 = \frac{1}{2} \times 45 \times h \implies 225 = 22.5 \times h \implies h = \frac{225}{22.5} = 10 \, \text{cm} \] Now, we can find the area of trapezium ABCD using the formula for the area of a trapezium: \[ \text{Area}_{trapezium} = \frac{1}{2} \times (b_1 + b_2) \times h \] Where \( b_1 = AD = 27 \, \text{cm} \), \( b_2 = BC = 45 \, \text{cm} \), and \( h = 10 \, \text{cm} \): \[ \text{Area}_{trapezium} = \frac{1}{2} \times (27 + 45) \times 10 = \frac{1}{2} \times 72 \times 10 = 360 \, \text{cm}^2 \] Therefore, the area of trapezium ABCD is \( 360 \, \text{cm}^2 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad