Pregunta
How many radians is \( 777^{\circ} \) ? Give the exact answer in simplest form. \( \square \) radians
Ask by Gonzalez Watkins. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( \frac{259\pi}{60} \) radians
Solución
To convert 777° to radians, we use the conversion factor:
radians = (π/180) × degrees
So,
777° = (π/180) × 777 = (777π)/180
We simplify by dividing the numerator and denominator by 3:
777 ÷ 3 = 259
180 ÷ 3 = 60
Thus, the expression becomes:
= (259π)/60
This is the exact answer in simplest form.
Answer: (259π)/60 radians
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To convert degrees to radians, you can use the formula: \[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \] For \( 777^{\circ} \): \[ \text{radians} = 777 \times \frac{\pi}{180} = \frac{777\pi}{180} \] Next, simplify the fraction \( \frac{777}{180} \). The greatest common divisor (GCD) of 777 and 180 is 3: \[ \frac{777 \div 3}{180 \div 3} = \frac{259}{60} \] Thus, the exact answer in simplest form is: \[ \frac{259\pi}{60} \text{ radians} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium