Let \( R \) be the region bounded by the graph of \( y=e^{-a x} \) and \( y=e^{-b x} \) for \( x \geq 0 \), where \( a>b>0 \). Find the area of \( R \). Write the integral. \( \int_{0}(\square) d x \) The area is
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the area of the region \( R \) bounded by the graphs of \( y = e^{-ax} \) and \( y = e^{-bx} \) for \( x \geq 0 \), we first determine the points of intersection. Since \( a > b > 0 \), the function \( y = e^{-ax} \) will decay faster than \( y = e^{-bx} \). Setting \( e^{-ax} = e^{-bx} \), we have: \[ -e^{-(ax)} = -e^{-(bx)} \implies ax = bx \implies (a - b)x = 0. \] Thus, the functions intersect at \( x = 0 \). As \( x \) approaches infinity, both functions approach \( 0 \), and \( y = e^{-bx} \) remains above \( y = e^{-ax} \). The area \( A \) between the curves from \( x = 0 \) to \( x = \infty \) is calculated as: \[ A = \int_{0}^{\infty} (e^{-bx} - e^{-ax}) \, dx. \] The integral can be expressed as: \[ \int_{0}^{\infty} (e^{-bx} - e^{-ax}) \, dx. \] Now we can evaluate the area as: \[ A = \int_{0}^{\infty} e^{-bx} \, dx - \int_{0}^{\infty} e^{-ax} \, dx. \] Calculating these integrals: \[ \int_{0}^{\infty} e^{-kx} \, dx = \frac{1}{k} \quad \text{for } k > 0, \] we find: \[ A = \left( \frac{1}{b} - \frac{1}{a} \right) = \frac{a-b}{ab}. \] Thus, the area is: \[ \frac{a-b}{ab}. \]
preguntas relacionadas
