Responder
- **Velocity at the critical stage**: 2.2 m/s (Option A)
- **Slope at the critical stage**: 1.95 × 10⁻³ (Option B)
- **Discharge at the critical stage**: 3.7 m³/s (Option B)
Solución
To solve the problem, we will use the following formulas related to open channel flow, particularly for a semi-circular channel:
1. **Velocity at the critical stage** can be calculated using the formula:
\[
V_c = \sqrt{g \cdot R}
\]
where \( g \) is the acceleration due to gravity (approximately \( 9.81 \, \mathrm{m/s^2} \)) and \( R \) is the hydraulic radius.
2. **Hydraulic radius \( R \)** for a semi-circular channel can be calculated as:
\[
R = \frac{A}{P}
\]
where \( A \) is the cross-sectional area and \( P \) is the wetted perimeter.
3. **Discharge \( Q \)** at the critical stage can be calculated using:
\[
Q = A \cdot V_c
\]
4. **Slope at the critical stage** can be calculated using the formula:
\[
S = \frac{n^2 \cdot Q^2}{R^{3/2}}
\]
### Step 1: Calculate the Cross-sectional Area \( A \) and Wetted Perimeter \( P \)
For a semi-circular channel with radius \( r = 1 \, \mathrm{m} \) and water depth \( h = 1 \, \mathrm{m} \):
- The area \( A \) of the water surface can be calculated as:
\[
A = \frac{1}{2} \cdot \pi r^2 = \frac{1}{2} \cdot \pi (1^2) = \frac{\pi}{2} \, \mathrm{m^2}
\]
- The wetted perimeter \( P \) for a semi-circular channel is:
\[
P = \pi r = \pi \cdot 1 = \pi \, \mathrm{m}
\]
### Step 2: Calculate the Hydraulic Radius \( R \)
Now we can calculate the hydraulic radius \( R \):
\[
R = \frac{A}{P} = \frac{\frac{\pi}{2}}{\pi} = \frac{1}{2} \, \mathrm{m}
\]
### Step 3: Calculate the Velocity at the Critical Stage \( V_c \)
Now we can calculate the velocity at the critical stage:
\[
V_c = \sqrt{g \cdot R} = \sqrt{9.81 \cdot 0.5}
\]
### Step 4: Calculate the Discharge \( Q \)
Now we can calculate the discharge \( Q \):
\[
Q = A \cdot V_c
\]
### Step 5: Calculate the Slope at the Critical Stage \( S \)
Finally, we can calculate the slope at the critical stage:
\[
S = \frac{n^2 \cdot Q^2}{R^{3/2}}
\]
Now, let's perform the calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{9.81\times 0.5}\)
- step1: Multiply the numbers:
\(\sqrt{4.905}\)
- step2: Rewrite the expression:
\(\sqrt{\frac{981}{200}}\)
- step3: Use the properties of radicals:
\(\frac{\sqrt{981}}{\sqrt{200}}\)
- step4: Simplify the expression:
\(\frac{3\sqrt{109}}{10\sqrt{2}}\)
- step5: Multiply by the Conjugate:
\(\frac{3\sqrt{109}\times \sqrt{2}}{10\sqrt{2}\times \sqrt{2}}\)
- step6: Multiply the numbers:
\(\frac{3\sqrt{218}}{10\sqrt{2}\times \sqrt{2}}\)
- step7: Multiply the numbers:
\(\frac{3\sqrt{218}}{20}\)
Calculate or simplify the expression \( (\pi/2) * \sqrt(9.81 * 0.5) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\pi }{2}\sqrt{9.81\times 0.5}\)
- step1: Multiply the numbers:
\(\frac{\pi }{2}\sqrt{4.905}\)
- step2: Simplify the root:
\(\frac{\pi }{2}\times \frac{3\sqrt{218}}{20}\)
- step3: Multiply the fractions:
\(\frac{\pi \times 3\sqrt{218}}{2\times 20}\)
- step4: Multiply:
\(\frac{3\sqrt{218}\times \pi }{40}\)
Calculate or simplify the expression \( (0.010^2 * ((\pi/2) * \sqrt(9.81 * 0.5))^2) / (0.5^(3/2)) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(0.01^{2}\left(\frac{\pi }{2}\sqrt{9.81\times 0.5}\right)^{2}\right)}{0.5^{\frac{3}{2}}}\)
- step1: Remove the parentheses:
\(\frac{0.01^{2}\left(\frac{\pi }{2}\sqrt{9.81\times 0.5}\right)^{2}}{0.5^{\frac{3}{2}}}\)
- step2: Multiply the numbers:
\(\frac{0.01^{2}\left(\frac{\pi }{2}\sqrt{4.905}\right)^{2}}{0.5^{\frac{3}{2}}}\)
- step3: Simplify the root:
\(\frac{0.01^{2}\left(\frac{\pi }{2}\times \frac{3\sqrt{218}}{20}\right)^{2}}{0.5^{\frac{3}{2}}}\)
- step4: Multiply the numbers:
\(\frac{0.01^{2}\left(\frac{3\sqrt{218}\times \pi }{40}\right)^{2}}{0.5^{\frac{3}{2}}}\)
- step5: Convert the expressions:
\(\frac{\left(\frac{1}{100}\right)^{2}\left(\frac{3\sqrt{218}\times \pi }{40}\right)^{2}}{0.5^{\frac{3}{2}}}\)
- step6: Convert the expressions:
\(\frac{\left(\frac{1}{100}\right)^{2}\left(\frac{3\sqrt{218}\times \pi }{40}\right)^{2}}{\left(\frac{1}{2}\right)^{\frac{3}{2}}}\)
- step7: Multiply the numbers:
\(\frac{\frac{\left(3\sqrt{218}\times \pi \right)^{2}}{4000^{2}}}{\left(\frac{1}{2}\right)^{\frac{3}{2}}}\)
- step8: Evaluate the power:
\(\frac{\frac{\left(3\sqrt{218}\times \pi \right)^{2}}{4000^{2}}}{\frac{\sqrt{2}}{4}}\)
- step9: Multiply by the reciprocal:
\(\frac{\left(3\sqrt{218}\times \pi \right)^{2}}{4000^{2}}\times \frac{4}{\sqrt{2}}\)
- step10: Rewrite the expression:
\(\frac{\left(3\sqrt{218}\times \pi \right)^{2}}{32^{2}\times 125^{2}}\times \frac{4}{\sqrt{2}}\)
- step11: Rewrite the expression:
\(\frac{\left(3\sqrt{218}\times \pi \right)^{2}}{2^{10}\times 125^{2}}\times \frac{2^{2}}{\sqrt{2}}\)
- step12: Reduce the numbers:
\(\frac{\left(3\sqrt{218}\times \pi \right)^{2}}{2^{8}\times 125^{2}}\times \frac{1}{\sqrt{2}}\)
- step13: Multiply the fractions:
\(\frac{\left(3\sqrt{218}\times \pi \right)^{2}}{4000000\sqrt{2}}\)
- step14: Evaluate the power:
\(\frac{1962\pi ^{2}}{4000000\sqrt{2}}\)
- step15: Reduce the fraction:
\(\frac{981\pi ^{2}}{2000000\sqrt{2}}\)
- step16: Multiply by the Conjugate:
\(\frac{981\pi ^{2}\sqrt{2}}{2000000\sqrt{2}\times \sqrt{2}}\)
- step17: Multiply the numbers:
\(\frac{981\sqrt{2}\times \pi ^{2}}{2000000\sqrt{2}\times \sqrt{2}}\)
- step18: Multiply the numbers:
\(\frac{981\sqrt{2}\times \pi ^{2}}{4000000}\)
### Step 1: Calculate the Velocity at the Critical Stage \( V_c \)
The calculated velocity at the critical stage is:
\[
V_c \approx 2.21 \, \mathrm{m/s}
\]
This value is closest to option **A. 2.2**.
### Step 2: Calculate the Discharge \( Q \)
The calculated discharge at the critical stage is:
\[
Q \approx 3.48 \, \mathrm{m^3/s}
\]
This value is closest to option **B. 3.7**.
### Step 3: Calculate the Slope at the Critical Stage \( S \)
The calculated slope at the critical stage is:
\[
S \approx 0.00342
\]
This value is closest to option **B. \( 1.95 \times 10^{-3} \)**.
### Summary of Results
- **Velocity at the critical stage**: \( V_c \approx 2.2 \, \mathrm{m/s} \) (Option A)
- **Slope at the critical stage**: \( S \approx 0.00342 \) (Option B)
- **Discharge at the critical stage**: \( Q \approx 3.48 \, \mathrm{m^3/s} \) (Option B)
If you have any further questions or need additional calculations, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución