Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( x=\frac{e^{3}-1}{3} \)
Solución
Solve the equation \( -10 \ln (3x+1)+6=-24 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(-10\ln{\left(3x+1\right)}+6=-24\)
- step1: Find the domain:
\(-10\ln{\left(3x+1\right)}+6=-24,x>-\frac{1}{3}\)
- step2: Move the expression to the left side:
\(-10\ln{\left(3x+1\right)}+6-\left(-24\right)=0\)
- step3: Subtract the numbers:
\(-10\ln{\left(3x+1\right)}+30=0\)
- step4: Solve using substitution:
\(-10t+30=0\)
- step5: Move the constant to the right side:
\(-10t=0-30\)
- step6: Remove 0:
\(-10t=-30\)
- step7: Change the signs:
\(10t=30\)
- step8: Divide both sides:
\(\frac{10t}{10}=\frac{30}{10}\)
- step9: Divide the numbers:
\(t=3\)
- step10: Substitute back:
\(\ln{\left(3x+1\right)}=3\)
- step11: Convert the logarithm into exponential form:
\(3x+1=e^{3}\)
- step12: Move the constant to the right side:
\(3x=e^{3}-1\)
- step13: Divide both sides:
\(\frac{3x}{3}=\frac{e^{3}-1}{3}\)
- step14: Divide the numbers:
\(x=\frac{e^{3}-1}{3}\)
- step15: Check if the solution is in the defined range:
\(x=\frac{e^{3}-1}{3},x>-\frac{1}{3}\)
- step16: Find the intersection:
\(x=\frac{e^{3}-1}{3}\)
The solution to the equation \( -10 \ln (3x+1)+6=-24 \) is \( x=\frac{e^{3}-1}{3} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To solve the equation \( -10 \ln (3x + 1) + 6 = -24 \), we first isolate the logarithmic term. Start by subtracting 6 from both sides: \[ -10 \ln (3x + 1) = -30 \] Next, divide both sides by -10: \[ \ln (3x + 1) = 3 \] Now, we exponentiate both sides to eliminate the natural logarithm: \[ 3x + 1 = e^3 \] Subtracting 1 from both sides gives: \[ 3x = e^3 - 1 \] Finally, divide by 3: \[ x = \frac{e^3 - 1}{3} \] This is the solution for \( x \). If you want a numerical approximation, you can evaluate \( e^3 \) and perform the calculation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium