\( \cos ^ { 2 } ( 45 ^ { \circ } - A ) - \sin ^ { 2 } ( 45 ^ { \circ } - A ) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
Did you know that the expression \( \cos^{2}(45^{\circ} - A) - \sin^{2}(45^{\circ} - A) \) can be simplified using a trigonometric identity? It actually utilizes the identity \( \cos^{2}(x) - \sin^{2}(x) = \cos(2x) \). So, you can rewrite your expression as \( \cos(2(45^{\circ} - A)) \), or ultimately \( \cos(90^{\circ} - 2A) \), which is \( \sin(2A) \)! In real-world settings, this applies to physics phenomena such as wave interference, where the sine and cosine functions represent different wave motions. Understanding how to manipulate these trigonometric identities can make analyzing harmonic motion, signal processing, or even electrical circuits much easier—and who wouldn't want to impress their friends with cool sound wave troubles?
