Pregunta
upstudy study bank question image url

Think About the Process in the diagram, \( \mathrm{m} \angle 1=(119-y)^{9}, m \angle 2=37^{9} \), and \( m \angle 3=(x+35)^{9} \), Write an equation to solve for \( x \) and an equation to solve for \( y \), Find the values of \( x \) and \( y \), Write an equation to solve for \( x \) and an equation to solve for \( y \), Choese the correct answer below, A. \( x+35=90 \) and \( 37+119-y=90 \) B. \( 37+x+35=180 \) and \( 119-y=90 \) C. \( 37+x+35=90 \) and \( 119-y=90 \) D. \( 37+x+35=90 \) and \( 119-y=180 \)

Ask by Cummings Carter. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To solve for \( x \) and \( y \), set up the following equations based on the angle measures: 1. \( x + 35 = 90 \) 2. \( 37 + (119 - y) = 90 \) Solving these equations gives: - \( x = 55 \) - \( y = 66 \) The correct answer is: A. \( x + 35 = 90 \) and \( 37 + 119 - y = 90 \)

Solución

We are given three angle measures with expressions (all in degrees):   m∠1 = 119 – y   m∠2 = 37   m∠3 = x + 35 Looking at the diagram (which shows a process with these angles), we deduce that the angles combine in two different places. One common relationship in these diagrams is when two adjacent angles form a right angle (i.e. 90°). In our situation, it turns out that there are two cases: 1. The angle marked (x + 35) is one of the two angles forming a right angle. That immediately gives us the equation:   x + 35 = 90 2. The other part of the diagram shows the angles 37° and (119 – y) together forming a right angle. This gives the equation:   37 + (119 – y) = 90 Let’s solve these: For x:   x + 35 = 90   Subtract 35 from both sides:   x = 90 – 35   x = 55 For y:   37 + (119 – y) = 90   First add 37 and 119: 37 + 119 = 156, so we have:   156 – y = 90   Subtract 90 from 156:   156 – 90 = 66, which gives:   y = 66 Now, comparing these equations with the answer choices: A. x + 35 = 90 and 37 + 119 – y = 90 B. 37 + x + 35 = 180 and 119 – y = 90 C. 37 + x + 35 = 90 and 119 – y = 90 D. 37 + x + 35 = 90 and 119 – y = 180 The equations we have exactly match option A. Thus, the correct answer is:   A. x + 35 = 90 and 37 + 119 – y = 90, with x = 55 and y = 66.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve for \( x \) and \( y \), we need to recognize the relationships between the angles in the diagram. Typically, angles in geometric figures either add up to 180 degrees (as in a triangle) or they can be complementary (adding up to 90 degrees). Moving on to our equations, based on the structure given: 1. The equation for angle \( x \) can be derived assuming angles fit the triangle sum of 180 degrees: \( 37 + x + 35 = 180 \). 2. For the measurement of \( y \), since we've \( \mathrm{m} \angle 1 = (119 - y)^9 \) and we need this to be an angle relevant for complementary conditions, it would be logical to consider \( 119 - y = 90 \). Now putting these together, we can review the options: By analyzing: A. \( x + 35 = 90 \) and \( 37 + 119 - y = 90 \) B. \( 37 + x + 35 = 180 \) and \( 119 - y = 90 \) C. \( 37 + x + 35 = 90 \) and \( 119 - y = 90 \) D. \( 37 + x + 35 = 90 \) and \( 119 - y = 180 \) The correct option that fits our derived relationships is **B**: \( 37 + x + 35 = 180 \) and \( 119 - y = 90 \). Once we've chosen option B: 1. For \( x \), rearranging gives \( x = 180 - 37 - 35 = 108 \). 2. For \( y \), we find \( y = 119 - 90 = 29 \). Thus, \( x = 108 \) and \( y = 29 \). Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad