Pregunta
upstudy study bank question image url

Sinplify a) \( \frac{a b-a^{2}}{b^{2}-a} \div \frac{a^{2}}{b^{2}+a b} \) b. b. \( \frac{a^{2}-a}{a}-\frac{a}{18} \) c. \( \frac{a-4}{2(a-a)} \) d) \( \frac{x^{2}+2 x+1}{x^{2}+x} \)

Ask by Barber Ramos. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) \( \frac{b^{3} - a^{2}b}{ab^{2} - a^{2}} \) b) \( \frac{17a - 18}{18} \) c) \( a - 4 \) d) \( \frac{x + 1}{x} \)

Solución

Calculate or simplify the expression \( (a*b-a^2)/(b^2-a) \div (a^2/(b^2+a*b)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(ab-a^{2}\right)}{\left(b^{2}-a\right)}\div \left(\frac{a^{2}}{\left(b^{2}+ab\right)}\right)\) - step1: Remove the parentheses: \(\frac{ab-a^{2}}{b^{2}-a}\div \left(\frac{a^{2}}{b^{2}+ab}\right)\) - step2: Remove the parentheses: \(\frac{ab-a^{2}}{b^{2}-a}\div \frac{a^{2}}{b^{2}+ab}\) - step3: Multiply by the reciprocal: \(\frac{ab-a^{2}}{b^{2}-a}\times \frac{b^{2}+ab}{a^{2}}\) - step4: Rewrite the expression: \(\frac{a\left(b-a\right)}{b^{2}-a}\times \frac{b^{2}+ab}{a^{2}}\) - step5: Reduce the fraction: \(\frac{b-a}{b^{2}-a}\times \frac{b^{2}+ab}{a}\) - step6: Multiply the terms: \(\frac{\left(b-a\right)\left(b^{2}+ab\right)}{\left(b^{2}-a\right)a}\) - step7: Multiply the terms: \(\frac{\left(b-a\right)\left(b^{2}+ab\right)}{a\left(b^{2}-a\right)}\) - step8: Multiply the terms: \(\frac{b^{3}-a^{2}b}{ab^{2}-a^{2}}\) Calculate or simplify the expression \( (a^2-a)/(a) - (a/18) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(a^{2}-a\right)}{a}-\frac{a}{18}\) - step1: Remove the parentheses: \(\frac{a^{2}-a}{a}-\frac{a}{18}\) - step2: Divide the terms: \(a-1-\frac{a}{18}\) - step3: Reduce fractions to a common denominator: \(\frac{a\times 18}{18}-\frac{18}{18}-\frac{a}{18}\) - step4: Transform the expression: \(\frac{a\times 18-18-a}{18}\) - step5: Reorder the terms: \(\frac{18a-18-a}{18}\) - step6: Subtract the terms: \(\frac{17a-18}{18}\) Calculate or simplify the expression \( (a-4)/(2*(a-a)) \). Divide by following steps: - step0: Divide the numbers: \(\frac{\left(a-4\right)}{\left(2\left(a-a\right)\right)}\) - step1: Calculate: \(\frac{a-4}{\left(2\left(a-a\right)\right)}\) - step2: Calculate: \(\frac{a-4}{0}\) - step3: Calculate: \(a-4\) Calculate or simplify the expression \( (x^2+2*x+1)/(x^2+x) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x^{2}+2x+1\right)}{\left(x^{2}+x\right)}\) - step1: Remove the parentheses: \(\frac{x^{2}+2x+1}{x^{2}+x}\) - step2: Factor the expression: \(\frac{\left(x+1\right)^{2}}{x\left(x+1\right)}\) - step3: Reduce the fraction: \(\frac{x+1}{x}\) a) \( \frac{a b-a^{2}}{b^{2}-a} \div \frac{a^{2}}{b^{2}+a b} = \frac{b^{3}-a^{2}b}{ab^{2}-a^{2}} \) b. \( \frac{a^{2}-a}{a}-\frac{a}{18} = \frac{17a-18}{18} \) c. \( \frac{a-4}{2(a-a)} = a-4 \) d) \( \frac{x^{2}+2 x+1}{x^{2}+x} = \frac{x+1}{x} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To simplify the expressions, let’s dive right in! For a) To simplify \( \frac{a b-a^{2}}{b^{2}-a} \div \frac{a^{2}}{b^{2}+a b} \), first, let's rewrite the division as multiplication by the reciprocal: \[ \frac{a b-a^{2}}{b^{2}-a} \cdot \frac{b^{2}+a b}{a^{2}} \] Now, factor \( a b-a^{2} \) as \( a(b-a) \) and rewrite \( b^{2}-a \) as \( (b-\sqrt{a})(b+\sqrt{a}) \). This leads us to: \[ \frac{a(b-a)(b^{2}+ab)}{(b^{2}-a)a^{2}} \] After canceling common factors, the final expression simplifies accordingly. For b) In the expression \( \frac{a^{2}-a}{a}-\frac{a}{18} \), factor the first term: \[ \frac{a(a-1)}{a} - \frac{a}{18} = a - \frac{a}{18} \] Finding a common denominator of 18 gives: \[ \frac{18a - a}{18} = \frac{17a}{18} \] This is the simplified form! For c) When you look at \( \frac{a-4}{2(a-a)} \), the denominator becomes \( 2 \cdot 0 \), which means it’s undefined since division by zero is a no-go in math. For d) For the last expression \( \frac{x^{2}+2 x+1}{x^{2}+x} \), notice that \( x^{2}+2x+1 \) can be factored as \( (x+1)^{2} \) while the denominator \( x^{2}+x \) simplifies to \( x(x+1) \). This leads to: \[ \frac{(x+1)^{2}}{x(x+1)} = \frac{x+1}{x} \] as long as \( x \neq -1 \) (because we can't divide by zero). There you have it—a simplified path through each of these expressions!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad